LI Qiang, WANG Yansen, WANG Chunlin, XU Shengji, FAN Zhiqiang. Performance deterioration law of retarded cement slurry and its mixed slurry in freezing borehole mud replacement[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(5): 182-189. DOI: 10.3969/j.issn.1001-1986.2021.05.020
Citation: LI Qiang, WANG Yansen, WANG Chunlin, XU Shengji, FAN Zhiqiang. Performance deterioration law of retarded cement slurry and its mixed slurry in freezing borehole mud replacement[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(5): 182-189. DOI: 10.3969/j.issn.1001-1986.2021.05.020

Performance deterioration law of retarded cement slurry and its mixed slurry in freezing borehole mud replacement

More Information
  • Received Date: January 04, 2021
  • Revised Date: May 24, 2021
  • Available Online: November 05, 2021
  • Published Date: October 24, 2021
  • The mud replacement of freezing hole has become a necessary part of freezing shaft sinking in rock strata, but in the lowering process, the freezing pipe is prone to excessive slurry viscosity resistance, and even be locked, leading to borehole failure. In order to deeply understand the performance deterioration law of cement slurry and its mixture in deep hole environment, the laboratory tests of retarded cement slurry and mixed slurry are carried out respectively, taking the apparent viscosity as the measurement index and considering the factors such as curing time, temperature, water loss state and volume ratio of mixed slurry. The results show that the viscosity of the cement slurry and mixed slurry increases with the extension of curing time, but the viscosity value and growth rate of the mixed slurry are much higher than those of the cement slurry within 20 h of curing time. The viscosity of the both has a nonlinear relationship with temperature. And the viscosity growth of slurry is accelerated by water loss state, especially the viscosity of the mixed slurry. The viscosity and volume ratio of the mixed slurry show a non-linear relationship. Compared with the retarded cement slurry, the viscosity of the mixed slurry increases sharply which is more affected by curing time, temperature and water loss state. The analysis shows that the sudden increase of viscosity and the sharp decrease or even loss of the fluidity of the mixed slurry are the key reasons for the excessive sinking resistance and even the locked freezing pipe. Therefore, controlling the height of the slurry mixing section and inhibiting the viscosity growth of the mixed slurry are the key to ensure the safe and smooth sinking of the freezing pipe.
  • [1]
    姚直书, 程桦, 荣传新. 西部地区深基岩冻结井筒井壁结构设计与优化[J]. 煤炭学报, 2010, 35(5): 760-764. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201005016.htm

    YAO Zhishu, CHENG Hua, RONG Chuanxin. Shaft structural design and optimization of deep freezing bedrock shaft in west area[J]. Journal of China Coal Society, 2010, 35(5): 760-764. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201005016.htm
    [2]
    吴璋, 王晓东, 武光辉, 等. 井筒冻结孔解冻涌水发生机制及其控制技术[J]. 煤田地质与勘探, 2015, 43(1): 35-42. DOI: 10.3969/j.issn.1001-1986.2015.01.008

    WU Zhang, WANG Xiaodong, WU Guanghui, et al. Mechanism and control technology of water inrush from shaft freezing holes after thawing[J]. Coal Geology & Exploration, 2015, 43(1): 35-42. DOI: 10.3969/j.issn.1001-1986.2015.01.008
    [3]
    邵红旗. 深基岩冻结井筒封闭不良冻结孔水害治理技术[J]. 煤炭科学技术, 2013, 41(10): 22-25. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201310014.htm

    SHAO Hongqi. Water disaster control technology of poor sealing frozen hole in deep freezing bedrock shaft[J]. Coal Science and Technology, 2013, 41(10): 22-25. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201310014.htm
    [4]
    夏阳, 岳丰田, 高书豹, 等. 西部地区淹水井筒冻结法施工监测分析[J]. 煤炭科学技术, 2012, 40(3): 37-40. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201203011.htm

    XIA Yang, YUE Fengtian, GAO Shubao, et al. Analysis on construction monitoring and measuring of ground freezing method for water flooded mine shaft in the west of China[J]. Coal Science and Technology, 2012, 40(3): 37-40. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201203011.htm
    [5]
    赵强, 武光辉. 基岩冻结法施工解冻水害的机理及治理技术[J]. 煤矿安全, 2013, 44(4): 91-93. DOI: 10.3969/j.issn.1008-4495.2013.04.026

    ZHAO Qiang, WU Guanghui. The mechanism and control technology of thawing water disaster caused by the bedrock freezing construction[J]. Safety in Coal Mines, 2013, 44(4): 91-93. DOI: 10.3969/j.issn.1008-4495.2013.04.026
    [6]
    程志彬, 吴晓山. 缓凝水泥浆置换冻结孔泥浆封水技术[J]. 建井技术, 2010, 31(6): 28-30. DOI: 10.3969/j.issn.1002-6029.2010.06.009

    CHENG Zhibin, WU Xiaoshan. Seal water technology of slow slurry replacement of frozen mud holes[J]. Mine Construction Technology, 2010, 31(6): 28-30. DOI: 10.3969/j.issn.1002-6029.2010.06.009
    [7]
    刘娟红, 纪洪广, 贺震平, 等. 适于弱胶结软岩的新型冻结孔封孔材料性能及微结构研究[J]. 煤炭学报, 2013, 38(4): 595-599. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201304011.htm

    LIU Juanhong, JI Hongguang, HE Zhenping, et al. Study on performance and microstructure of new type sealing material suitable for freezing hole at weakly cemented soft rock[J]. Journal of China Coal Society, 2013, 38(4): 595-599. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201304011.htm
    [8]
    齐锦霞, 刘娟红, 高超, 等. 缓凝型冻结孔封孔材料试验研究[J]. 建井技术, 2012, 33(5): 33-36. DOI: 10.3969/j.issn.1002-6029.2012.05.013

    QI Jinxia, LIU Juanhong, GAO Chao, et al. Experimental study on retarded sealing material for freezing hole[J]. Mine Construction Technology, 2012, 33(5): 33-36. DOI: 10.3969/j.issn.1002-6029.2012.05.013
    [9]
    杨伟光, 冯旭海, 田乐. 冻结孔环形空间充填材料密度试验研究[J]. 煤炭科学技术, 2014, 42(增刊1): 19-20. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ2014S1009.htm

    YANG Weiguang, FENG Xuhai, TIAN Le. Research on the sealing materials used to filling hollow space around freezing pipes in freezing holes[J]. Coal Science and Technology, 2014, 42(Sup. 1): 19-20. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ2014S1009.htm
    [10]
    陈新年, 奚家米, 张琨. 井筒超深冻结孔封孔缓凝水泥浆性能研究[J]. 煤炭科学技术, 2015, 43(3): 6-9. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201503002.htm

    CHEN Xinnian, XI Jiami, ZHANG Kun. Study on performance of hole sealing retarded cement slurry in ultra-deep freezing holes[J]. Coal Science and Technology, 2015, 43(3): 6-9. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201503002.htm
    [11]
    赵嘉亮, 郭永东. 用缓凝水泥浆置换冻结孔内粘土浆的研究与应用[J]. 建井技术, 2007, 28(6): 33-35. DOI: 10.3969/j.issn.1002-6029.2007.06.012

    ZHAO Jialiang, GUO Yongdong. Research and application of slow slurry replacement of frozen clay pulp hole[J]. Mine Construction Technology, 2007, 28(6): 33-35. DOI: 10.3969/j.issn.1002-6029.2007.06.012
    [12]
    王衍森, 张成银, 张春虎, 等. 基岩冻结凿井冻结孔的泥浆置换充填研究[J]. 中国矿业大学学报, 2013, 42(5): 712-717. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201305002.htm

    WANG Yansen, ZHANG Chengyin, ZHANG Chunhu, et al. Drilling mud replacing technology for freezing hole with slow setting cement slurry in freezing sinking in rock strata[J]. Journal of China University of Mining and Technology, 2013, 42(5): 712-717. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201305002.htm
    [13]
    张成银. 冻结法凿井冻结孔缓凝水泥浆封孔技术研究[D]. 徐州: 中国矿业大学, 2011.

    ZHANG Chengyin. Study on the sealing technology of freezing hole using retarding grout in freezing sinking[D]. Xuzhou: China University of Mining and Technology, 2011.
    [14]
    张成银, 王衍森, 张春虎. 冻结孔封孔缓凝水泥浆液流变性能研究及可沉管分析[J]. 煤炭工程, 2013, 45(7): 32-35. https://www.cnki.com.cn/Article/CJFDTOTAL-MKSJ201307013.htm

    ZHANG Chengyin, WANG Yansen, ZHANG Chunhu. Study on rheological behavior of slow setting cement slurry during freezing hole sealing and analysis of freezing pipe sinking[J]. Coal Engineering, 2013, 45(7): 32-35. https://www.cnki.com.cn/Article/CJFDTOTAL-MKSJ201307013.htm
    [15]
    樊志强. 冻结孔固管充填浆液性能劣化及冻结管的下沉受阻机理研究[D]. 徐州: 中国矿业大学, 2015.

    FAN Zhiqiang. Study on the performance deterioration of filling slurry and mechanism of freezing pipe sinking blocked during freezing hole sealing[D]. Xuzhou: China University of Mining and Technology, 2015.
    [16]
    闵凡路, 魏代伟, 姜腾, 等. 泥浆在地层中的渗透特性试验研究[J]. 岩土力学, 2014, 35(10): 2801-2806. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201410009.htm

    MIN Fanlu, WEI Daiwei, JIANG Teng, et al. Experimental study of law of slurry infiltration in strata[J]. Rock and Soil Mechanics, 2014, 35(10): 2801-2806. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201410009.htm
    [17]
    杨扶银. 粗粒土泥浆渗透特性及泥皮抗渗性研究[D]. 西安: 西安理工大学, 2007.

    YANG Fuyin. Research on the seepage characteristics of slurry through coarse-grained soil and impervious characteristics of slurry cake[D]. Xi'an: Xi'an University of Technology, 2007.
    [18]
    边凯, 杨志斌. 煤层底板承压水导升带影响因素正交模拟试验[J]. 煤田地质与勘探, 2016, 44(1): 74-78. http://mdkt.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=3c372a70-01df-4d73-b30f-e2f20e7e1420

    BIAN Kai, YANG Zhibin. Orthogonal test of the influential factors of confined water-conducting zone in coal floor[J]. Coal Geology & Exploration, 2016, 44(1): 74-78. http://mdkt.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=3c372a70-01df-4d73-b30f-e2f20e7e1420
  • Related Articles

    [1]LI Lei, LU Shouqing, CHU Tingxiang, ZHONG Xiaoxing, LIU Chongyang, REN Ting. Evolutionary mechanisms and models of strain, porosity, and permeability of compacted broken coals[J]. COAL GEOLOGY & EXPLORATION, 2024, 52(5): 37-45. DOI: 10.12363/issn.1001-1986.23.11.0743
    [2]HAO Zhiyong, YUE Lixin, SUN Keming, WANG Shuailing. Experiment study on the porosity and permeability of low permeability coal by supercritical CO2 temperature variation[J]. COAL GEOLOGY & EXPLORATION, 2018, 46(3): 64-71. DOI: 10.3969/j.issn.1001-1986.2018.03.012
    [3]FU Xiaolong, DAI Junsheng, ZHANG Dandan, ZOU Juan, XU Ke. Prediction of fractures of seam No.3 in northern Shizhuang, Qinshui basin[J]. COAL GEOLOGY & EXPLORATION, 2017, 45(1): 56-61. DOI: 10.3969/j.issn.1001-1986.2017.01.011
    [4]LYU Yumin, TANG Dazhen, XU Hao. Stress sensitivity and difference of porosity and permeability in coal reservoirs in Hangcheng CBM block[J]. COAL GEOLOGY & EXPLORATION, 2013, 41(6): 31-34. DOI: 10.3969/j.issn.1001-1986.2013.06.008
    [5]WU Jianguo, TANG Dazhen, LI Song, WANG Ai, TANG Hailiang. Characteristics of the pore-microfracture system of coal reservoirs in Enhong area, Yunnan province[J]. COAL GEOLOGY & EXPLORATION, 2012, 40(4): 29-33. DOI: 10.3969/j.issn.1001-1986.2012.04.007
    [6]CHEN Yilin, LI Zhuangfu, QIN Yong. The mechanism of secondary porosity in Taiyuan sandstone, at Shuangshan region, Ordos basin[J]. COAL GEOLOGY & EXPLORATION, 2011, 39(1): 11-15. DOI: 10.3969/j.issn.1001-1986.2011.01.003
    [7]LI Xiao-yan, DU Xin-feng, CHEN Hong-chun. Laboratory measurement of coal permeability in Xinji mining area[J]. COAL GEOLOGY & EXPLORATION, 2001, 29(6): 23-26.
    [8]Guo Deyong, Han Dexin, Feng Zhiliang. EXPERIMENTAL STUDY ON THE POROSITY AND PERMEABILITY OF DISTURBED COAL UNDER CONFINED PRESSURE[J]. COAL GEOLOGY & EXPLORATION, 1998, 26(4): 31-34.
    [9]Zhang Jing, Han Baoping, Tang Jiaxiang, Feng Qiyan. THE PORE STRUCTURAL CHARACTERISTICS IN COALS, AND ROOF AND FLOOR ROCKS[J]. COAL GEOLOGY & EXPLORATION, 1998, 26(2): 28-31.
    [10]SU Fu-yi. VARIATIONAL CHARACTERISTIC OF COAL FOROSITY UNDER DIFFERENT CONFINING PRESSURES AND ITS APPLICATION[J]. COAL GEOLOGY & EXPLORATION, 1994, 22(3): 27-31.
  • Cited by

    Periodical cited type(8)

    1. 张旭辉,解彦彬,杨文娟,张超,万继成,董征,王彦群,蒋杰,李龙. 煤矿井下采掘工作场景非均质图像去雾与增强技术. 煤田地质与勘探. 2025(01): 245-256 . 本站查看
    2. 张铁聪,陈华州,赵俊杰,王利景,贾冬冬. 基于数字孪生技术的煤矿掘进机自动截割方法研究. 中国煤炭. 2024(01): 93-100 .
    3. 贾澎涛,靳路伟,王斌,郭风景,李娜. 采煤机截割部低照度图像的边缘检测技术. 煤田地质与勘探. 2024(04): 172-178 . 本站查看
    4. 张旭辉,王悦,杨文娟,陈鑫,张超,黄梦瑶,刘彦徽,杨骏豪. 基于改进最佳缝合线的矿井图像拼接方法. 工矿自动化. 2024(04): 9-17 .
    5. 汪进超,韩增强,王益腾,王超,张国华. 基于像素空间信息的孔内低照度图像孔隙结构量化方法研究. 岩石力学与工程学报. 2024(S1): 3175-3186 .
    6. 丁序海,张侯,陈录平,党国杰. 基于多频无线电坑透技术的煤矿地质综合勘探研究. 能源与环保. 2024(06): 82-87 .
    7. 肖耀猛. 目标背景对比度优化下高煤尘低照度环境主动成像技术. 矿山机械. 2024(09): 60-65 .
    8. 陶荣颖,王守军,李南,朱伟. 煤矿副井口全景智能识别技术的研究与应用. 内蒙古煤炭经济. 2024(22): 154-156 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views PDF downloads Cited by(10)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return