HAO Zhiyong, YUE Lixin, SUN Keming, WANG Shuailing. Experiment study on the porosity and permeability of low permeability coal by supercritical CO2 temperature variation[J]. COAL GEOLOGY & EXPLORATION, 2018, 46(3): 64-71. DOI: 10.3969/j.issn.1001-1986.2018.03.012
Citation: HAO Zhiyong, YUE Lixin, SUN Keming, WANG Shuailing. Experiment study on the porosity and permeability of low permeability coal by supercritical CO2 temperature variation[J]. COAL GEOLOGY & EXPLORATION, 2018, 46(3): 64-71. DOI: 10.3969/j.issn.1001-1986.2018.03.012

Experiment study on the porosity and permeability of low permeability coal by supercritical CO2 temperature variation

Funds: 

National Natural Science Foundation of China(51674133,51404135)

More Information
  • Received Date: February 24, 2018
  • Published Date: June 24, 2018
  • In order to solve the universal problem of low permeability and low gas recovery in China's high gassy seams, combining the strong diffusion, dissolution-enhancement and other unique advantages of super-critical carbon dioxide. The three axis penetration experimental device was self-made, the macro increasing permeability experiment of coal was carried out after the action of super-critical carbon dioxide with different temperatures, the microscopic scanning imaging experiment of coal was conducted based on macro increasing permeability experiment. The results show:after the action of super-critical carbon dioxide with constant volume stress, constant pore pressure and different temperatures, the permeability is increased by one order of magnitude than that before the increasing permeability experiment, but in the super-critical temperature range of carbon dioxide, the permeability of coal shows a negative exponential change with the increase of temperature. After the action of super-critical carbon dioxide, the micro porosity of coal increases by two orders of magnitude than that before the increasing permeability experiment, the evolution rate of micro pore-fissure slows down with the increase of temperature, the porosity presents a negative exponential changing law with the increasing temperature. The macro-micro experimental data also show that the macro-permeability of coal increases with the increase of micro-porosity. During the process of increasing permeability by the super-critical carbon dioxide, pore pressure plays the main control function in increasing the permeability of low permeability coal seam.
  • [1]
    王南,裴玲,雷丹凤,等. 中国非常规天然气资源分布及开发现状[J]. 油气地质与采收率,2015,22(1):26-31.

    WANG Nan,PEI Ling,LEI Danfeng,et al. Analysis of unconventional gas resources distribution and development status in China[J]. Petroleum Geology and Recovery Efficiency,2015,22(1):26-31.
    [2]
    韩兵,张明,刘旺博. 二连盆地群低煤阶煤层气成藏模式——以霍林河盆地为例[J]. 煤田地质与勘探,2012,40(1):24-28.

    HAN Bing,ZHANG Ming,LIU Wangbo. Coalbed methane reservoir-forming pattern of low rank coal in Erlian basin:With Huolinhe basin as an example[J]. Coal Geology & Exploration,2012,40(1):24-28.
    [3]
    刘云亮,张培河. 柳林地区煤层气开采动态及单井产量主控因素分析[J]. 煤田地质与勘探,2016,44(2):34-38.

    LIU Yunliang,ZHANG Peihe. Analysis on production dynamic and controlling of single coalbed methane(CBM) well in Liulin area[J]. Coal Geology & Exploration,2016,44(2):34-38.
    [4]
    蔺海晓,苏现波,刘晓,等. 煤储层造缝及卸压增透实验研究[J]. 煤炭学报,2014,39(增刊2):432-435.

    LIN Haixiao,SU Xianbo,LIU Xiao,et al. Experimental study of permeability enhancement in coal layers by fracture making or unloading[J]. Journal of China Coal Society,2014,39(S2):432-435.
    [5]
    梁冰,孙可明. 低渗透煤层气开采理论及其应用[M]. 北京:科学出版社,2006.
    [6]
    曹文忠,曹福德,闫庆磊. 红阳三矿储层特征及煤层气抽采方法探讨[J]. 中国煤炭地质,2015,27(3):17-19.

    CAO Wenzhong,CAO Fude,YAN Qinglei. Probe into CBM reservoir characteristics and drainage method in Hongyang coalmine No. 3[J]. Coal Geology of China,2015,27(3):17-19.
    [7]
    李相臣,康毅力. 煤层气储层微观结构特征及研究方法进展[J]. 中国煤层气,2010,7(2):13-17.

    LI Xiangchen,KANG Yili. Advances in the micro-structure features and research methodology of coalbed methane reservoir[J]. China Coalbed Methane,2010,7(2):13-17.
    [8]
    姚艳斌,刘大锰,汤达祯,等. 沁水盆地煤储层微裂隙发育的煤岩学控制机理[J]. 中国矿业大学学报,2010,39(1):6-13.

    YAO Yanbin,LIU Dameng,TANG Dazhen,et al. Influence and control of coal petrogical composition on the development of micro-fracture of coal reservoir in the Qinshui basin[J]. Journal of China University of Mining and Technology,2010,39(1):6-13.
    [9]
    刘玉龙,汤达祯,许浩,等. 煤岩类型控制下的微观孔隙结构及吸附特征研究[J]. 煤炭工程,2016,48(11):107-110.

    LIU Yulong,TANG Dazhen,XU Hao,et al. Study on microscopic pore structure and adsorption characteristics of different lithotypes[J]. Coal Engineering,2016,48(11):107-110.
    [10]
    肖晓春,徐军,潘一山,等. 功率超声影响的煤中甲烷气促解规律实验研究[J]. 岩石力学与工程学报,2013,32(1):65-71.

    XIAO Xiaochun,XU Jun,PAN Yishan,et al. Experimental study of promoting methane desorption law in coal considering power ultrasound effect[J]. Chinese Journal of Rock Mechanics and Engineering,2013,32(1):65-71.
    [11]
    梁卫国,吴迪,赵阳升. CO2驱替煤层CH4试验研究[J]. 岩石力学与工程学报,2010,29(4):665-673.

    LIANG Weiguo,WU Di,ZHAO Yangsheng. Experimental study of coalbeds methane replacement by carbon dioxide[J]. Chinese Journal of Rock Mechanics and Engineering,2010,29(4):665-673.
    [12]
    岳立新,孙可明. 超临界CO2增透煤微观图像重构及三维数值模拟[J]. 中国安全生产科学技术,2017,13(1):58-64.

    YUE Lixin,SUN Keming. Microscopic image reconstruction and three-dimensional numerical simulation of supercritical CO2 anti-reflection coal[J]. Journal of Safety Science and Technology,2017,13(1):58-64.
    [13]
    王海柱,沈忠厚,李根生. 超临界CO2开发页岩气技术[J]. 石油钻井技术,2011,39(3):30-35.

    WANG Haizhu,SHEN Zhonghou,LI Gensheng. Feasibility analysis on shale gas exploitation with supercritical CO2[J]. Petroleun Driling Techniques,2011,39(3):30-35.
    [14]
    孙可明,任硕,张树翠,等. 超临界CO2在低渗透煤层中渗流规律的实验研究[J]. 实验力学,2013,28(1):117-120.

    SUN Keming,REN Shuo,ZHANG Shucui,et al. Experimental study of supercritical carbon dioxide seepage flow in low permeability coal seam[J]. Journal of Experimental Mechanics,2013,28(1):117-120.
    [15]
    杨涛,杨栋,康志勤,等. 注入超临界CO2对提高煤层渗透性的影响[J]. 煤炭科学技术,2010,38(4):108-110.

    YANG Tao,YANG Dong,KANG Zhiqin,et al. Influence on improving permeable performance in coal seam through injection supercritical CO2[J]. Coal Science and Technology,2010,38(4):108-110.
    [16]
    苏静,范翔宇,陈林. CO2黏度模型及求解[J]. 断块油气田,2009,16(5):81-83.

    SU Jing,FAN Xiangyu,CHEN Lin. CO2 viscosity model and solution[J]. Fault-Block Oil & Gas Field,2009,16(5):81-83.
    [17]
    肖杨,吴元欣,王存文,等. 超临界CO2中聚碳酸酯的合成Ⅱ. 超临界CO2密度的计算[J]. 天然气化工,2007,33(1):75-78.

    XIAO Yang,WU Yuanxin,WANG Cunwen,et al. Synthesis of polycarbonate in supercritical CO2Ⅱ. calculation of supercritical CO2 density[J]. Journal of Natural Gas Chemistry,2007,33(1):75-78.
    [18]
    熊承仁,唐辉明,刘宝琛,等. 利用SEM照片获取土的孔隙结构参数[J]. 地球科学,2007,32(7):415-419.

    XIONG Chengren,TANG Huiming,LIU Baochen,et al. Using SEM photos to gain the pore structural parameters of soil samples[J]. Earth Science,2007,32(7):415-419.
    [19]
    张顺康,陈月明,侯健,等. 岩心CT微观驱替实验的图像处理研究[J]. 大庆石油地质与开发,2007,26(1):10-12.

    ZHANG Shunkang,CHEN Yueming,HOU Jian,et al. Image processing for CT microscopic core flooding experiments[J]. Petroleum Geology & Oilfield Development in Daqing,2007,26(1):10-12.
  • Related Articles

    [1]WEN Zhihui, GUO Shuqian, WEI Jianping, ZHANG Tiegang, WANG Jianwei, ZHANG Libo, REN Yongjie. R&D and application of an experimental system for coal permeability enhancement through resonance under the excitation of low-frequency vibration[J]. COAL GEOLOGY & EXPLORATION, 2024, 52(9): 31-40. DOI: 10.12363/issn.1001-1986.24.04.0239
    [2]XU Zhixin, WAN Jifang, HONG Yi, LIU Hangming, YI Xianzhong, DIAO Binbin, WANG Yanbin. Analysis of three-dimensional nonlinear fluid-solid coupling vibration characteristics of coalbed methane abandoned well plugging string[J]. COAL GEOLOGY & EXPLORATION, 2024, 52(6): 174-186. DOI: 10.12363/issn.1001-1986.24.03.0219
    [3]WEN Zhihui, GUO Shuqian, WEI Jianping, ZHANG Tiegang, WANG Jianwei, ZHANG Libo, REN Yongjie. R&D and application of an experimental system for coal permeability enhancement through resonance under the excitation of low-frequency vibration[J]. COAL GEOLOGY & EXPLORATION.
    [4]WANG Gang, JIANG Chenghao, CHEN Xuechang. Numerical simulation of pore structure stress characteristics of coal and rock mass[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(1): 57-64,80. DOI: 10.3969/j.issn.1001-1986.2021.01.006
    [5]QU Lina, LI Bo. Nishihara acceleration model-based experiment of creep characteristics of coal[J]. COAL GEOLOGY & EXPLORATION, 2019, 47(6): 115-120. DOI: 10.3969/j.issn.1001-1986.2019.06.018
    [6]YAN Bin. Error correction of MEMS acceleration sensor used for trajectory measurement while drilling system[J]. COAL GEOLOGY & EXPLORATION, 2017, 45(4): 144-148. DOI: 10.3969/j.issn.1001-1986.2017.04.026
    [7]ZHU Sainan, CAO Guangzhu, LI Bin. Dynamic stability model test of soil slope[J]. COAL GEOLOGY & EXPLORATION, 2016, 44(2): 66-72. DOI: 10.3969/j.issn.1001-1986.2016.02.013
    [8]XUE Qin. Measurement algorithmic adjustment of 2-axis inclinometer in borehole inclinometer[J]. COAL GEOLOGY & EXPLORATION, 2007, 35(6): 70-73.
    [9]WANG Lei, LIN Jiandong. APPLICATION OF A MODIFIED VELOCITY STACKING PROCCESSING IN CPS3 CHART SYSTEM[J]. COAL GEOLOGY & EXPLORATION, 2000, 28(5): 59-60.
    [10]Zhang Zhiyu, Gao Jinghuai, Qin Weiyang, Gu Jialiu. APPLICATION OF WAVELET TRANSFORMATION TO EXTRACT THREE INSTANTANEOUS PARAMETERS WITH HIGH RESOLUTION[J]. COAL GEOLOGY & EXPLORATION, 1998, 26(1): 54-57.

Catalog

    Article Metrics

    Article views (39) PDF downloads (6) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return