Citation: | ZHANG Yi,KANG Zhengming,FENG Hong,et al.Detection performance of the azimuthal electromagnetic wave logging instrument at coal-rock interface in horizontal wells[J].Coal Geology & Exploration,2022,50(2):140−149. DOI: 10.12363/issn.1001-1986.21.06.0334 |
[1] |
葛世荣,郝雪弟,田凯,等. 采煤机自主导航截割原理及关键技术[J]. 煤炭学报,2021,46(3):774−788.
GE Shirong,HAO Xuedi,TIAN Kai,et al. Principle and key technology of autonomous navigation cutting for deep coal seam[J]. Journal of China Coal Society,2021,46(3):774−788.
|
[2] |
王海舰,黄梦蝶,高兴宇,等.考虑截齿损耗的多传感信息融合煤岩界面感知识别[J]. 煤炭学报,2021,46(6):1995−2008.
WANG Haijian,HUANG Mengdie,GAO Xingyu,et al. Coal-rock interface recognition based on multi-sensor information fusion considering pick wear[J]. Journal of China Coal Society,2021,46(6):1995−2008.
|
[3] |
张强,孙绍安,张坤,等. 基于主动红外激励的煤岩界面识别[J]. 煤炭学报,2020,45(9):3363−3370.
ZHANG Qiang,SUN Shaoan,ZHANG Kun,et al. Coal and rock interface identification based on active infrared excitation[J]. Journal of China Coal Society,2020,45(9):3363−3370.
|
[4] |
ZHANG Guoxin,WANG Zengcai,ZHAO Lei. Recognition of rock-coal interface in top coal caving through tail beam vibrations by using stacked sparse autoencoders[J]. Journal of Vibroengineering,2016,18(7):4261−4275. DOI: 10.21595/jve.2016.17386
|
[5] |
葛世荣. 采煤机技术发展历程(六):煤岩界面探测[J]. 中国煤炭,2020,46(11):10−24. DOI: 10.3969/j.issn.1006-530X.2020.11.002
GE Shirong. The development history of coal shearer technology(Part six):Coal-rock interface detection[J]. China Coal,2020,46(11):10−24. DOI: 10.3969/j.issn.1006-530X.2020.11.002
|
[6] |
王莉,苏波. 综采工作面煤岩界面识别方法研究[J]. 中国设备工程,2020(21):215−216. DOI: 10.3969/j.issn.1671-0711.2020.21.117
WANG Li,SU Bo. Study on identification method of coal-rock interface in fully mechanized mining face[J]. China Plant Engineering,2020(21):215−216. DOI: 10.3969/j.issn.1671-0711.2020.21.117
|
[7] |
王文天. 定向钻孔雷达方位识别及三维成像算法研究[D]. 长春: 吉林大学, 2018.
WANG Wentian. Research on azimuth recognition and 3D imaging algorithm of directional borehole radar[D]. Changchun: Jilin University, 2018.
|
[8] |
RODNEY P F,WISLER M. Electromagnetic wave resistivity MWD tool[J]. SPE Drilling Engineering,1986,1(5):337−346. DOI: 10.2118/12167-PA
|
[9] |
DUPUIS C,DENICHOU J M. Automatic inversion of deep-directional-resistivity measurements for well placement and reservoir description[J]. The Leading Edge,2015,34(5):504−512. DOI: 10.1190/tle34050504.1
|
[10] |
LI Qiming, OMERAGIC D, CHOU L, et al. New directional electromagnetic tool for proactive geosteering and accurate formation evaluation while drilling[C]//SPWLA 46th Annual Logging Symposium. 2005: 26–29.
|
[11] |
吴冲. 随钻方位电磁波电阻率测井方法研究[D]. 北京: 中国石油大学(北京), 2017.
WU Chong. Study on azimuthal electromagnetic resistivity logging while drilling[D]. Beijing: China University of Petroleum(Beijing), 2017.
|
[12] |
WU Zhenguan,WANG Lei,FAN Yiren,et al. Detection performance of azimuthal electromagnetic logging while drilling tool in anisotropic media[J]. Applied Geophysics,2020,17:1−12. DOI: 10.1007/s11770-020-0804-z
|
[13] |
王磊,范宜仁,操应长,等. 大斜度井/水平井随钻方位电磁波测井资料实时反演方法[J]. 地球物理学报,2020,63(4):1715−1724. DOI: 10.6038/cjg2020M0617
WANG Lei,FAN Yiren,CAO Yingchang,et al. Real-time inversion of logging-while-drilling azimuthal electromagnetic measurements acquired in high-angle and horizontal wells[J]. Chinese Journal of Geophysics,2020,63(4):1715−1724. DOI: 10.6038/cjg2020M0617
|
[14] |
CONSTABLE M V, ANTONSEN F, STALHEIM S O, et al. Looking ahead of the bit while drilling: From vision to reality[C]// SPWLA 57th Annual Logging Symposium, 2016, 57(5): 426–446.
|
[15] |
柴斌, 许小凯, 张川, 等. 六种不同变质程度煤的电阻率研究[J/OL]. 地球物理学进展, 2021: 1–13[2021-04-19]. http://kns.cnki.net/kcms/detail/11.2982.p.20201109.1440.134.html.
CHAI Bin, XU Xiaokai, ZHANG Chuan, et al. Characteristics of resistivity and its anisotropy of six kinds of metamorphic coals[J/OL].Progress in Geophysics(in Chinese), 2021: 1–13[2021-04-19]. http://kns.cnki.net/kcms/detail/11.2982.p.20201109.1440.134.html.
|
[16] |
CHEN Gang,FAN Yiren,LI Quanxin. A study of coalbed methane(CBM) reservoir boundary detections based on azimuth electromagnetic waves[J]. Journal of Petroleum Science and Engineering,2019,179:432−443. DOI: 10.1016/j.petrol.2019.04.063
|
[17] |
陈刚,范宜仁,李泉新. 顺煤层钻进随钻方位电磁波顶底板探测影响因素[J]. 煤田地质与勘探,2019,47(6):201−206.
CHEN Gang,FAN Yiren,LI Quanxin. Influencing factors of azimuth electromagnetic wave roof and floor detection while drilling along coal seam[J]. Coal Geology & Exploration,2019,47(6):201−206.
|
[18] |
CHEN Gang,FAN Yiren,LI Quanxin. Using an azimuth electromagnetic wave imaging method to detect and characterize coal–seam interfaces and low–resistivity anomalies[J]. Journal of Environmental and Engineering Geophysics,2020,25(1):75−87. DOI: 10.2113/JEEG19-041
|
[19] |
王磊. 深探测多分量随钻电磁波测井理论与正反演研究[D]. 青岛: 中国石油大学(华东), 2018.
WANG Lei. Deep-detection multi-component logging-while-drilling electromagnetic logging: Theory, forward modeling and inversion/data processing[D]. Qingdao: China University of Petroleum(East China), 2018.
|
[20] |
倪尧. 三分量感应测井响应分析及反演研究[D]. 成都: 电子科技大学, 2016.
NI Yao. Response analysis and inversion of multicomponent induction logging[D]. Chengdu: University of Electronic Science and Technology of China, 2016.
|