ZHANG Yin,LI Zhe,SONG Shikang,et al.Mechanical properties and acoustic emission characteristics of sandstone under natural and saturated conditions[J].Coal Geology & Exploration,2022,50(2):98−105. DOI: 10.12363/issn.1001-1986.21.06.0341
Citation: ZHANG Yin,LI Zhe,SONG Shikang,et al.Mechanical properties and acoustic emission characteristics of sandstone under natural and saturated conditions[J].Coal Geology & Exploration,2022,50(2):98−105. DOI: 10.12363/issn.1001-1986.21.06.0341

Mechanical properties and acoustic emission characteristics of sandstone under natural and saturated conditions

More Information
  • Received Date: June 24, 2021
  • Revised Date: October 14, 2021
  • Available Online: January 27, 2022
  • Published Date: January 31, 2022
  • In order to study the mechanical properties and acoustic emission (AE) characteristics of sandstone with different grain sizes in the process of damage and failure under saturated and natural conditions, we carried out uniaxial compression tests and AE tests on three kinds of sandstone under saturated and natural conditions to study the mechanical properties and AE characteristics under the uniaxial stress state. The test results show that the average compressive strength of coarse-grained sandstone, medium-grained sandstone, and fine-grained sandstone are 54.23 MPa, 53.56 MPa, 59.46 MPa respectively under natural conditions, and 35.62 MPa, 31.79 MPa and 29.10 MPa under saturated conditions. After saturation, the elastic modulus of them decreases by 19.6%, 32.7% and 33.7%, respectively, and the Poisson’s ratio increases by 9.6%, 10.4% and 19.5%, respectively. The variation trend of AE energy curve of all samples at each stage is consistent with the degree of stress failure at each stage, and the peak value of AE energy appears near the peak value of stress. The total AE energy in the elastic deformation stage of saturated samples decreases to 67.4% for coarse-grained sandstone, 32.4% for medium-grained sandstone and 29.3% for fine-grained sandstone. Compared with that of sandstone in the natural state, the total AE energy in the damage evolution stage of saturated samples decreases significantly by 73.5% in coarse-grained sandstone, 36.0% in medium-grained sandstone and 62.0% in fine-grained sandstone. The value of AE energy in the unstable rupture stage also reduces by 30.7% in coarse-grained sandstone, 29.5% medium-grained sandstone and 38.3% fine-grained sandstone. The changes of mechanical properties and AE characteristics of sandstone after saturation are the reflection of microstructural changes in the macro level. The peak value of AE energy in the process of uniaxial failure of sandstone can be used to characterize the brittleness of sandstone, providing reference for the study of rock brittleness.
  • [1]
    杨春和,冒海军,王学潮,等. 板岩遇水软化的微观结构及力学特性研究[J]. 岩土力学,2006,27(12):2090−2098. DOI: 10.3969/j.issn.1000-7598.2006.12.002

    YANG Chunhe,MAO Haijun,WANG Xuechao,et al. Study on variation of microstructure and mechanical properties of water−weakening slates[J]. Rock and Soil Mechanics,2006,27(12):2090−2098. DOI: 10.3969/j.issn.1000-7598.2006.12.002
    [2]
    熊德国,赵忠明,苏承东,等. 饱水对煤系地层岩石力学性质影响的试验研究[J]. 岩石力学与工程学报,2011,30(5):998−1006.

    XIONG Deguo,ZHAO Zhongming,SU Chengdong,et al. Experimental study of effect of water−saturated state on mechanical properties of rock in coal measure strata[J]. Chinese Journal of Rock Mechanics and Engineering,2011,30(5):998−1006.
    [3]
    周翠英,邓毅梅,谭祥韶,等. 饱水软岩力学性质软化的试验研究与应用[J]. 岩石力学与工程学报,2005,24(1):33−38. DOI: 10.3321/j.issn:1000-6915.2005.01.006

    ZHOU Cuiying,DENG Yimei,TAN Xiangshao,et al. Experimental research on the softening of mechanical properties of saturated soft rocks and application[J]. Chinese Journal of Rock Mechanics and Engineering,2005,24(1):33−38. DOI: 10.3321/j.issn:1000-6915.2005.01.006
    [4]
    滕腾,杜玉冰,陈朋飞,等. 砂岩变形率与水理效应的力学特性研究[J]. 矿业科学学报,2020,5(3):342−352.

    TENG Teng,DU Yubing,CHEN Pengfei,et al. Effects of deformation rate and hydrated condition on the mechanical property of sandstone[J]. Journal of Mining Science and Technology,2020,5(3):342−352.
    [5]
    张艳博,梁鹏,孙林,等. 单轴压缩下饱水花岗岩破裂过程声发射频谱特征试验研究[J]. 岩土力学,2019,40(7):2497−2506.

    ZHANG Yanbo,LIANG Peng,SUN Lin,et al. Spectral characteristics of AE in the process of saturated granite fracture under uniaxial compression[J]. Rock and Soil Mechanics,2019,40(7):2497−2506.
    [6]
    许江,吴慧,陆丽丰,等. 不同含水状态下砂岩剪切过程中声发射特性试验研究[J]. 岩石力学与工程学报,2012,31(5):914−920. DOI: 10.3969/j.issn.1000-6915.2012.05.007

    XU Jiang,WU Hui,LU Lifeng,et al. Experimental study of acoustic emission characteristics during shearing process of sandstone under different water contents[J]. Chinese Journal of Rock Mechanics and Engineering,2012,31(5):914−920. DOI: 10.3969/j.issn.1000-6915.2012.05.007
    [7]
    唐书恒,颜志丰,朱宝存,等. 饱和含水煤岩单轴压缩条件下的声发射特征[J]. 煤炭学报,2010,35(1):37−41.

    TANG Shuheng,YAN Zhifeng,ZHU Baocun,et al. Acoustic emission characteristics of water−saturated coals in uniaxial compression experiment[J]. Journal of China Coal Society,2010,35(1):37−41.
    [8]
    文圣勇,韩立军,宗义江,等. 不同含水率红砂岩单轴压缩试验声发射特征研究[J]. 煤炭科学技术,2013,41(8):46−48.

    WEN Shengyong,HAN Lijun,ZONG Yijiang,et al. Study on acoustic emission characteristics of sandstone uniaxial compression test with different moisture content[J]. Coal Science and Technology,2013,41(8):46−48.
    [9]
    陈结,姜德义,邱华富,等. 卤水浸泡后盐岩声发射特征试验研究[J]. 岩土力学,2013,34(7):1937−1942.

    CHEN Jie,JIANG Deyi,QIU Huafu,et al. Study of acoustic emission character of salt rock soaked in brine[J]. Rock and Soil Mechanics,2013,34(7):1937−1942.
    [10]
    童敏明,胡俊立,唐守锋,等. 不同应力速率下含水煤岩声发射信号特性[J]. 采矿与安全工程学报,2009,26(1):97−100. DOI: 10.3969/j.issn.1673-3363.2009.01.019

    TONG Minming,HU Junli,TANG Shoufeng,et al. Study of acoustic emission signal characteristic of water−containing coal and rock under different stress rates[J]. Journal of Mining and Safety Engineering,2009,26(1):97−100. DOI: 10.3969/j.issn.1673-3363.2009.01.019
    [11]
    夏冬,杨天鸿,王培涛,等. 干燥及饱和岩石循环加卸载过程中声发射特征试验研究[J]. 煤炭学报,2014,39(7):1243−1247.

    XIA Dong,YANG Tianhong,WANG Peitao,et al. Experimental study of acoustic emission characteristics of dry and saturated rocks during cyclic loading and unloading process[J]. Journal of China Coal Society,2014,39(7):1243−1247.
    [12]
    夏冬,杨天鸿,王培涛,等. 循环加卸载下饱和岩石变形破坏的损伤与能量分析[J]. 东北大学学报(自然科学版),2014,35(6):867−870. DOI: 10.3969/j.issn.1005-3026.2014.06.024

    XIA Dong,YANG Tianhong,WANG Peitao,et al. Analysis on damage and energy in deformation and fracture of saturated rock subjected to cyclic loading and unloading[J]. Journal of Northeastern University(Natural Science),2014,35(6):867−870. DOI: 10.3969/j.issn.1005-3026.2014.06.024
    [13]
    TOROK A,VASARHELYI B. The influence of fabric and water content on selected rock mechanical parameters of travertine,examples from Hungary[J]. Engineering Geology,2010,115(3/4):237−245.
    [14]
    JANSEN D P,CARLSON S R,YOUNG R P,et al. Ultrasonic imaging and acoustic emission monitoring of thermally induced microcracks in Lac du Bonnet granite[J]. Journal of Geophysical Research,1993,98(12):22231−22243.
    [15]
    邓华锋,李建林,王孔伟,等. 饱和–风干循环过程中砂岩次生孔隙率变化规律研究[J]. 岩土力学,2012,33(2):483−488. DOI: 10.3969/j.issn.1000-7598.2012.02.026

    DENG Huafeng,LI Jianlin,WANG Kongwei,et al. Research on secondary porosity changing law of sandstone under saturation−air dry cycles[J]. Rock and Soil Mechanics,2012,33(2):483−488. DOI: 10.3969/j.issn.1000-7598.2012.02.026
    [16]
    邓华锋,胡安龙,李建林,等. 水岩作用下砂岩劣化损伤统计本构模型[J]. 岩土力学,2017,38(3):631−639.

    DENG Huafeng,HU Anlong,LI Jianlin,et al. Statistical damage constitutive model of sandstone under water−rock interaction[J]. Rock and Soil Mechanics,2017,38(3):631−639.
    [17]
    邓华锋,张恒宾,李建林,等. 水–岩作用对砂岩卸荷力学特性及微观结构的影响[J]. 岩土力学,2018,39(7):2344−2352.

    DENG Huafeng,ZHANG Hengbin,LI Jianlin,et al. Effect of water−rock interaction on unloading mechanical properties and microstructure of sandstone[J]. Rock and Soil Mechanics,2018,39(7):2344−2352.
    [18]
    王泽鹏,顾义磊,耿文博,等. 不同粒度砂岩声发射分形特征研究[J]. 地下空间与工程学报,2018,14(增刊2):594−599.

    WANG Zepeng,GU Yilei,GENG Wenbo,et al. Laboratory study on AE count fractal feature of sandstone acoustic emission with different granularity[J]. Chinese Journal of Underground Space and Engineering,2018,14(Sup.2):594−599.
    [19]
    刘运思,王世鸣,颜世军,等. 基于声发射实验层状砂岩力学特性及破坏机理[J]. 中南大学学报(自然科学版),2019,50(6):1419−1427. DOI: 10.11817/j.issn.1672-7207.2019.06.021

    LIU Yunsi,WANG Shiming,YAN Shijun,et al. Properties and failure mechanism of layered sandstone based on acoustic emission experiments[J]. Journal of Central South University(Science and Technology),2019,50(6):1419−1427. DOI: 10.11817/j.issn.1672-7207.2019.06.021
    [20]
    潘孝康,陈结,姜德义,等. 三轴卸围压条件下砂岩声发射统计特征[J]. 煤炭学报,2018,43(10):2750−2757.

    PAN Xiaokang,CHEN Jie,JIANG Deyi,et al. Statistical characteristics of sandstone acoustic emission under triaxial unloading confining pressure[J]. Journal of China Coal Society,2018,43(10):2750−2757.
    [21]
    张艳博, 孙林, 姚旭龙, 等. 花岗岩破裂过程声发射关键信号时频特征试验研究[J/OL]. 岩土力学, 2020, 41(1): 1–10[2019-09-08].https://doi.org/10.16285/j.rsm.2018.1411.

    ZHANG Yanbo, SUN Lin, YAO Xulong, et al. Experimental study of time-frequency characteristics of acoustic emission key signals during granite fracture[J/OL]. Rock and Soil Mechanics, 2020, 41(1): 1−10[2019-09-08]. https://doi.org/10.16285/j.rsm.2018.1411.
    [22]
    PATNAIK S N, HOPKINS D A. Strength of materials[M]. London: Longman Green, 1944: 71 –72.
    [23]
    HETENYI M. Handbook of experimental stress analysis[M]. New York: John Wiley, 1966: 23–25.
    [24]
    RAMSAY J G. Folding and fracturing of rocks[M]. New York: McGraw-Hill, 1967: 44–47.
    [25]
    OBERT L, DUVALL W I. Rock mechanics and the design of structures in rock[M]. New York: John Wiley, 1967: 78–82.
    [26]
    李庆辉,陈勉,金衍,等. 页岩脆性的室内评价方法及改进[J]. 岩石力学与工程学报,2012,31(8):1680−1685.

    LI Qinghui,CHEN Mian,JIN Yan,et al. Indoor evaluation method for shale brittleness and improvement[J]. Chinese Journal of Rock Mechanics and Engineering,2012,31(8):1680−1685.
    [27]
    SONDERGELD C H, NEWSHAM K E, COMISKY J T, et al. Petrophysical considerations in evaluating and producing shale gas resources[C]//Society of Petroleum Engineers SPE Unconventional Gas Conference. Pittsburgh, Pennsylvania, USA: Society of Petroleum Engineers. doi: 10.2118/131768−MS.
  • Related Articles

    [1]ZHAN Xinyu, GAO Lin, ZHAO Fanghao, WANG Yongyin, LIU Ping, HAN Sen. Experimental study on proportioning of ultra-high strength similar materials for large similarity ratio model tests[J]. COAL GEOLOGY & EXPLORATION, 2023, 51(11): 109-118. DOI: 10.12363/issn.1001-1986.23.05.0237
    [2]SONG Yanqi, WANG Shilei, SUN Chuan, HAO Liangjun. Similar model test and mechanical analysis of fault structure[J]. COAL GEOLOGY & EXPLORATION, 2019, 47(5): 150-156. DOI: 10.3969/j.issn.1001-1986.2019.05.021
    [3]ZHANG Fan, MA Geng, TAO Yunqi, LIU Xiao, FENG Dan, LI Rui. Proportioning experiment of similar material for coal and rock model test[J]. COAL GEOLOGY & EXPLORATION, 2018, 46(1): 119-124. DOI: 10.3969/j.issn.1001-1986.2018.01.021
    [4]HE Jun, ZHENG Zeyong, CHEN Liang. Change features of outburst parameters in the thermal simulation experiment of low metamorphic coal[J]. COAL GEOLOGY & EXPLORATION, 2017, 45(5): 28-32. DOI: 10.3969/j.issn.1001-1986.2017.05.006
    [5]CHENG Jun, ZHANG Lihong, WU Guodai, LIU Jingqing, LIU Zixuan. Relationship between tectonic stress field and coal/gas outburst[J]. COAL GEOLOGY & EXPLORATION, 2012, 40(4): 1-4,11. DOI: 10.3969/j.issn.1001-1986.2012.04.001
    [6]JING Xing-peng, WANG Ya-chao, WANG Wei-feng, PANG Xiang-wei, XU Ping. An experimental research on coalbed spontaneous combustion simulation[J]. COAL GEOLOGY & EXPLORATION, 2009, 37(4): 15-18. DOI: 10.3969/j.issn.1001-1986.2009.04.004
    [7]LI Xin-hu. Lithology identification methods contrast based on support vector machines at different well logging parameter[J]. COAL GEOLOGY & EXPLORATION, 2007, 35(3): 72-76,80.
    [8]HUANG Qing-xiang, LIU Teng-fei. Simulating test on the subsidence law of subsurface water resisting layer upon shallow coalbed mining[J]. COAL GEOLOGY & EXPLORATION, 2006, 34(5): 34-37.
    [9]PENG Su-ping, MENG Zhao-ping, LI Yu-lin. Influence of faults on coal roof stability by physical modeling study[J]. COAL GEOLOGY & EXPLORATION, 2001, 29(3): 1-4.
    [10]Yang Yingtao, Li Kangkang. THE WATER INRUSH MECHANISM IN COAL SEAM FLOOR BY THE PHYSICAL ANALOG SIMULATION TECHNIQUE[J]. COAL GEOLOGY & EXPLORATION, 1997, 25(S1): 33-36.
  • Cited by

    Periodical cited type(15)

    1. 贺丹,杨甫,马丽,付德亮,张丽维. 古城矿区富油煤赋存特征及主控因素分析. 煤炭技术. 2024(02): 97-103 .
    2. 宁树正,张莉,徐小涛,张建强,邹卓. 新疆北部早、中侏罗世富油煤分布规律及控制因素. 煤炭科学技术. 2024(01): 244-254 .
    3. 乔军伟,董伸培,苏刚,王昌建,焦龙祥,梁向阳,杜芳鹏,李领晨. 陕北曹家滩矿井富油煤地球化学特征及其沉积环境. 西安科技大学学报. 2024(02): 289-300 .
    4. 郭伟,杨盼曦,俞尊义,杨甫,王晶,马丽,李红强,杨伯伦,吴志强. 陕北富油煤分子模型构建及其热解提油分子动力学特性. 煤田地质与勘探. 2024(07): 132-143 . 本站查看
    5. 师庆民,耿旭虎,王双明,蔡玥,韩波,王生全,张哲豪,何羽飞. 基于煤体真密度和自然伽马响应规律的富油煤判识. 煤田地质与勘探. 2024(07): 85-96 . 本站查看
    6. 宋超,陈晓坤,徐勇,于志金. 含水率对油气伴生煤恒温热解后氧化特性的影响. 西安科技大学学报. 2024(04): 699-708 .
    7. 李致潍,赵正威,冯烁,韩长城. 吐哈盆地大南湖矿区富油煤赋存特征及主控因素分析. 中国煤炭. 2024(09): 1-8 .
    8. 李新虎,刘晓梅,李晓君,杨承文,李健,程光艺,丁佳萌. 陇东地区富油煤地质特征与主控因素研究. 西安科技大学学报. 2024(05): 901-910 .
    9. 朱士飞,刘威,张静,秦云虎,毛礼鑫. 富油煤煤质特征与原位热解技术开发利用现状. 煤质技术. 2024(06): 23-33 .
    10. 杨甫,段中会,马丽,付德亮,田涛,贺丹,岳明娟. 陕西省富油煤分布及受控地质因素. 煤炭科学技术. 2023(03): 171-181 .
    11. 东振,张梦媛,陈艳鹏,冯烁,薛俊杰,陈浩,田继军,陈姗姗,赵宇峰,王兴刚,焦立新,李斌. 三塘湖-吐哈盆地富油煤赋存特征与资源潜力分析. 煤炭学报. 2023(10): 3789-3805 .
    12. 马丽,王双明,段中会,杨甫,付德亮,贺丹,张丽维. 陕西省富油煤资源潜力及开发建议. 煤田地质与勘探. 2022(02): 1-8 . 本站查看
    13. 高文博,冯烁,田继军,吴斌. 三塘湖煤田汉水泉矿区富油煤赋存特征及沉积环境分析. 煤炭工程. 2022(10): 136-140 .
    14. 王双美. 青龙寺井田主采煤层古泥炭沼泽演化规律研究. 煤炭科学技术. 2021(03): 181-188 .
    15. 吴鹏,曹地,朱光辉,柳雪青,李勇,李洋冰,胡维强,刘再振,孔为,费景亮. 鄂尔多斯盆地东缘临兴地区海陆过渡相页岩气地质特征及成藏潜力. 煤田地质与勘探. 2021(06): 24-34 . 本站查看

    Other cited types(1)

Catalog

    Article Metrics

    Article views (303) PDF downloads (30) Cited by(16)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return