ZHANG Sen,SHU Biao,LIANG Ming,et al.Quantification and mechanism analysis of meso-damage of high-temperature granite under different cooling modes[J].Coal Geology & Exploration,2022,50(2):106−114. DOI: 10.12363/issn.1001-1986.21.06.0346
Citation: ZHANG Sen,SHU Biao,LIANG Ming,et al.Quantification and mechanism analysis of meso-damage of high-temperature granite under different cooling modes[J].Coal Geology & Exploration,2022,50(2):106−114. DOI: 10.12363/issn.1001-1986.21.06.0346

Quantification and mechanism analysis of meso-damage of high-temperature granite under different cooling modes

More Information
  • Received Date: June 27, 2021
  • Revised Date: October 05, 2021
  • Accepted Date: November 08, 2021
  • Available Online: January 27, 2022
  • Published Date: January 31, 2022
  • Cooling shock is an effective method to increase the permeability of geothermal reservoir by causing fractures on high temperature rock. For the purpose of quantitatively analyze the damage degree of granite caused by cooling shock at different heating temperatures and explore the damage mechanism under the action of cooling shock, the damage of high temperature granite samples under was analyzed under natural cooling and water cooling conditions by means of thin section observation and SEM scanning technology. The results show that when the heating temperature is increased from 200°C to 800°C, the crack density of the section A at the center of the rock sample increases by 17.6%-144.7% and 27.6%-163.7% respectively under natural cooling and water cooling. For the slice B 12.5 mm away from the center of the circle, the fracture density increases by 40.1%-202.8% and 61.3%-222.7% under natural cooling and water cooling conditions, respectively. The results also show that the damage degree of granite increases with the increase of heating temperature, and the damage degree of granite is greater when it is cooled by water than in air. In addition, the damage degree of granite is greater when it is closer to the sample surface due to the existence of thermal gradient. These conclusions not only provide experimental reference for understanding the effect of cooling shock on the damage of high-temperature granite, but also play a very important role in guiding the application of thermal stimulation method in reservoir reconstruction.
  • [1]
    CUI Guodong,ZHANG Liang,REN Bo,et al. Geothermal exploitation from depleted high temperature gas reservoirs via recycling supercritical CO2:Heat mining rate and salt precipitation effects[J]. Applied Energy,2016,183:837−852. DOI: 10.1016/j.apenergy.2016.09.029
    [2]
    张浩,徐拴海,杨雨,等. 地热井固井材料导热性能影响因素[J]. 煤田地质与勘探,2020,48(2):195−201. DOI: 10.3969/j.issn.1001-1986.2020.02.029

    ZHANG Hao,XU Shuanhai,YANG Yu,et al. Influencing factors of thermal conductivity of cementing materials for geothermal wells[J]. Coal Geology & Exploration,2020,48(2):195−201. DOI: 10.3969/j.issn.1001-1986.2020.02.029
    [3]
    许天福,张延军,曾昭发,等. 增强型地热系统(干热岩)开发技术进展[J]. 科技导报,2012,30(32):42−45. DOI: 10.3981/j.issn.1000-7857.2012.32.004

    XU Tianfu,ZHANG Yanjun,ZENG Zhaofa,et al. Technology progress in an enhanced geothermal system(hot dry rock)[J]. Science & Technology Review,2012,30(32):42−45. DOI: 10.3981/j.issn.1000-7857.2012.32.004
    [4]
    SIRATOVICH P A,VILLENEUVE M C,COLE J W,et al. Saturated heating and quenching of three crustal rocks and implications for thermal stimulation of permeability in geothermal reservoirs[J]. International Journal of Rock Mechanics and Mining Sciences,2015,80:265−280. DOI: 10.1016/j.ijrmms.2015.09.023
    [5]
    FREIRE-LISTA D M,FORT R,VARAS-MURIEL M J. Thermal stress-induced microcracking in building granite[J]. Engineering Geology,2016,206:83−93. DOI: 10.1016/j.enggeo.2016.03.005
    [6]
    ZHAO Zhihong. Thermal influence on mechanical properties of granite:A microcracking perspective[J]. Rock Mechanics and Rock Engineering,2016,49(3):747−762. DOI: 10.1007/s00603-015-0767-1
    [7]
    WANG H F,BONNER B P,CARLSON S R,et al. Thermal stress cracking in granite[J]. Journal of Geophysical Research,1989,94(B2):1745−1758. DOI: 10.1029/JB094iB02p01745
    [8]
    AVANTHI ISAKA B L,GAMAGE R P,RATHNAWEERA T D,et al. An influence of thermally-induced micro-cracking under cooling treatments:Mechanical characteristics of Australian granite[J]. Energies,2018,11(6):1−24.
    [9]
    SHEN Yanjun,HOU Xin,YUAN Jiangqiang,et al. Experimental study on temperature change and crack expansion of high temperature granite under different cooling shock treatments[J]. Energies,2019,12(11):1−17.
    [10]
    SHEN Yanjun,HOU Xin,YUAN Jiangqiang,et al. Thermal cracking characteristics of high-temperature granite suffering from different cooling shocks[J]. International Journal of Fracture,2020,225(2):153−168. DOI: 10.1007/s10704-020-00470-2
    [11]
    JIN Peihua,HU Yaoqing,SHAO Jixi,et al. Influence of different thermal cycling treatments on the physical,mechanical and transport properties of granite[J]. Geothermics,2019,78:118−128. DOI: 10.1016/j.geothermics.2018.12.008
    [12]
    阴伟涛,赵阳升,冯子军. 高温三轴应力下粗、细粒花岗岩力学特性研究[J]. 太原理工大学学报,2020,51(5):627−633.

    YIN Weitao,ZHAO Yangsheng,FENG Zijun. Study on the mechanical properties of coarse-grained and fine-grained granite under high temperature triaxial stress[J]. Journal of Taiyuan University of Technology,2020,51(5):627−633.
    [13]
    KIM K,KEMENY J,NICKERSON M. Effect of rapid thermal cooling on mechanical rock properties[J]. Rock Mechanics and Rock Engineering,2014,47(6):2005−2019. DOI: 10.1007/s00603-013-0523-3
    [14]
    GLOVER P W J,BAUD P,DAROT M,et al. α/β phase transition in quartz monitored using acoustic emissions[J]. Geophysical Journal International,1995,120(3):775−782. DOI: 10.1111/j.1365-246X.1995.tb01852.x
    [15]
    SMALLEY I,MARKOVIC S B. Controls on the nature of loess particles and the formation of loess deposits[J]. Quaternary International,2019,502(part A):160−164.
    [16]
    MAHABADI O K,TATONE B S A,GRASSELLI G. Influence of microscale heterogeneity and microstructure on the tensile behavior of crystalline rocks[J]. Journal of Geophysical Research:Solid Earth,2014,119(7):5324−5341. DOI: 10.1002/2014JB011064
    [17]
    JUST J,KONTNY A. Thermally induced alterations of minerals during measurements of the temperature dependence of magnetic susceptibility:A case study from the hydrothermally altered Soultz-sous-Forêts granite,France[J]. International Journal of Earth Sciences,2012,101(3):819−839. DOI: 10.1007/s00531-011-0668-9
  • Related Articles

    [1]HE Ziguang, ZHAO Fasuo, CHEN Haoxiang, WU Bo, ZHOU Jingjing. Simplified internal variable gradient model for zonal disintegration of rocks in circular underground tunnels[J]. COAL GEOLOGY & EXPLORATION, 2022, 50(5): 103-109. DOI: 10.12363/issn.1001-1986.21.09.0481
    [2]GUAN Jianbo, LI Yu, YIN Caiyun, YANG Zhi, JIN Chaobin, ZHAO Meng, YANG Hang. Love wave full waveform inversion via Pseudo-Hessian gradient pre-conditioning operator[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(4): 49-59. DOI: 10.3969/j.issn.1001-1986.2021.04.007
    [3]CHEN Yuanjiang, JIANG Zhiqiang, TAN Zhiren. Optimization of surface contact-based thermal conductivity model of cemented particles[J]. COAL GEOLOGY & EXPLORATION, 2019, 47(6): 153-158,166. DOI: 10.3969/j.issn.1001-1986.2019.06.023
    [4]LI Bo, SUN Donghui, WEI Jianping, ZHANG Lulu. Experimental study on the effect of gas pressure gradient on coal permeability[J]. COAL GEOLOGY & EXPLORATION, 2018, 46(1): 35-40. DOI: 10.3969/j.issn.1001-1986.2018.01.006
    [5]LIN Peng, PENG Suping, LU Yongxu, WANG Taotao. Full waveform inversion based on the conjugate gradient method[J]. COAL GEOLOGY & EXPLORATION, 2017, 45(1): 131-136,142. DOI: 10.3969/j.issn.1001-1986.2017.01.026
    [6]CHU Zhaoxiang. Characteristics of coal and rock thermal properties in Yongchuan mine[J]. COAL GEOLOGY & EXPLORATION, 2016, 44(5): 37-41. DOI: 10.3969/j.issn.1001-1986.2016.05.006
    [7]XU Kai-jun, LI Tong-lin, ZHANG Hui, LI Jian-ping. 3D resistivity inversion of vertical finite line source using conjugate gradients[J]. COAL GEOLOGY & EXPLORATION, 2006, 34(3): 68-71.
    [8]WU Xiao-ping. Rapid 3-D inversion of induced polarization data using conjugate gradient method[J]. COAL GEOLOGY & EXPLORATION, 2004, 32(5): 62-64.
    [9]Fu Yaojun. LOW-TO MID-TEMPERATURE THERMAL STORAGE AND THERMAL FIELD IN HOLES[J]. COAL GEOLOGY & EXPLORATION, 2000, 28(2): 46-49.
    [10]Li Xuejun. STUDY AND EXPERIMENT ON HEADING DETECTING BY FIXEDELECTRIC SOURCE GRADIENT METHOD IN UNDERGROUND[J]. COAL GEOLOGY & EXPLORATION, 1992, 20(4): 59-63.
  • Cited by

    Periodical cited type(6)

    1. 刘思雨,杨国栋,黄冕,尹书郭,马鑫,包琦. 人工裂缝参数对CO_2-ESGR中CO_2封存和CH_4开采的影响. 石油与天然气化工. 2024(02): 94-100 .
    2. 马佳,何登发,张伟康,鲁国,张旭亮,梅庆华. 川东南石龙峡背斜区奥陶系五峰组页岩顶面现今应力场数值模拟研究. 地质科学. 2024(03): 792-803 .
    3. 程丽,严伟,李娜. 陆相页岩储集层含水饱和度测井计算方法——以川东南复兴区块凉高山组为例. 新疆石油地质. 2024(03): 371-377 .
    4. 黄梦婷,高斐,栾凯伦,施赵南,周卓. 涪陵页岩储层裂缝识别方法研究. 矿产勘查. 2024(05): 853-860 .
    5. 李娟,陈雷,计玉冰,程青松. 浅层海相页岩含气性特征及其主控因素——以昭通太阳区块下志留统龙马溪组为例. 石油实验地质. 2023(02): 296-306 .
    6. 于华伟. 重庆东南地区龙马溪组页岩孔隙结构特征. 内蒙古煤炭经济. 2022(21): 181-183 .

    Other cited types(5)

Catalog

    Article Metrics

    Article views (317) PDF downloads (24) Cited by(11)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return