CHU Zhaoxiang. Characteristics of coal and rock thermal properties in Yongchuan mine[J]. COAL GEOLOGY & EXPLORATION, 2016, 44(5): 37-41. DOI: 10.3969/j.issn.1001-1986.2016.05.006
Citation: CHU Zhaoxiang. Characteristics of coal and rock thermal properties in Yongchuan mine[J]. COAL GEOLOGY & EXPLORATION, 2016, 44(5): 37-41. DOI: 10.3969/j.issn.1001-1986.2016.05.006

Characteristics of coal and rock thermal properties in Yongchuan mine

Funds: 

National Key Technology Research and Development Program of the Ministry of Science and Technology of China (2012BAK04B02)

More Information
  • Received Date: June 25, 2015
  • Available Online: October 22, 2021
  • Coal and rock thermal physical parameters are basic data for mine cooling fire prevention and control Coal and rock density, specific heat, heat conductivity coefficient, thermal diffusivity, original temperature, temperature gradient in present mining area of Yongchuan coal mine were measured through in situ underground measurement and laboratory tests. Results of the tests show that:at the level -400 m of coal mine, the density, specific heat, coefficient of thermal conductivity and thermal diffusivity of coal samples are within the normal range; at the level -357 m to -438 m, the thermophysical parameters, such as the coal density, specific heat, coefficient of thermal conductivity, do not change with the elevation, at the level -400 m, the original temperature of coal and rock is about 35~36℃; below the zone of constant temperature in the mine, the geothermal gradient is 2.32/100 m above℃ the level -400 m and 2.65/100 m below℃ the level -400 m, tends to increase slightly, but still in the range of the normal geothermal gradient. Incombination with the geological exploration data, the measured value of the original temperature of coal and rock is smaller than the theoretically calculated value, but the error is not more than 3%, so the precision meets the demands of engineering.
  • Related Articles

    [1]XU Dongjing, ZHANG Ruiqing, GAO Weifu, JIANG Haonan, ZHU Haifeng, LI Ye, XIA Zhicun. Zonal prediction of the heights of water-conducting fracture zones under varying overburden types in North China-type coalfields[J]. COAL GEOLOGY & EXPLORATION, 2025, 53(3): 177-189. DOI: 10.12363/issn.1001-1986.24.10.0625
    [2]CHEN Luwang, HU Yongsheng, ZHANG Jie, ZHANG Miao, ZHENG Jian, ZHENG Xin, ZHANG Yuanyuan, CAI Xinyue, WU Minghui. Progress of research on key technologies for hydrogeochemical prospecting in North China type coalfield[J]. COAL GEOLOGY & EXPLORATION, 2023, 51(2): 207-219. DOI: 10.12363/issn.1001-1986.23.01.0025
    [3]DING Tongfu, WANG Minhua, ZHAO Junfeng. Genesis analysis and study on tectonic control on water of Huainan North China-type coal field[J]. COAL GEOLOGY & EXPLORATION, 2020, 48(4): 102-108. DOI: 10.3969/j.issn.1001-1986.2020.04.015
    [4]WANG Zitao, LIU Qimeng, LIU Yu. Spatial distribution and formation of groundwater hydrochemistry in Huainan coalfield[J]. COAL GEOLOGY & EXPLORATION, 2019, 47(5): 40-47. DOI: 10.3969/j.issn.1001-1986.2019.05.006
    [5]HU Baolin, GAO Deyi, LIU Huihu, XU Hongjie, ZHANG Ping, SUN Fei. Relationship between sedimentary facies and source rocks of Permian strata in Huainan coalfield[J]. COAL GEOLOGY & EXPLORATION, 2017, 45(6): 1-6,13. DOI: 10.3969/j.issn.1001-1986.2017.06.001
    [6]WU Dun, ZHANG Wenyong, ZHU Wenwei, ZHOU Xuenian, DING Hai, ZHAO Zhiyi. The exploration and development of unconventional oil and gas in the Taiyuan Formation from Huainan coalfield[J]. COAL GEOLOGY & EXPLORATION, 2017, 45(4): 13-18. DOI: 10.3969/j.issn.1001-1986.2017.04.003
    [7]GAO Deyi, PING Wenwen, HU Baolin, LIU Huihu, XU Hongjie, CHENG Qiao, ZHANG Ping. Geochemistry characteristics of trace elements of mud shale of Shanxi Formation in Huainan coalfield and its significance[J]. COAL GEOLOGY & EXPLORATION, 2017, 45(2): 14-21. DOI: 10.3969/j.issn.1001-1986.2017.02.003
    [8]LI Yong-jun, PENG Su-ping. Classifications and characteristics of karst collapse columns in North China coalfields[J]. COAL GEOLOGY & EXPLORATION, 2006, 34(4): 53-57.
    [9]SONG Chuan-zhong, ZHU Guang, LIU Guo-sheng, NIU Man-lan. Identificating of structure and its dynamics control of Huainan coalfield[J]. COAL GEOLOGY & EXPLORATION, 2005, 33(1): 11-15.
    [10]ZHANG Hong, ZHENG Yu-zhu, ZHENG Gao-sheng, WANG Sheng-zu. Extensional structure under the Fufeng-nappe in Huainan Coalfield, Anhui Province, and its formative mechanism[J]. COAL GEOLOGY & EXPLORATION, 2003, 31(3): 1-4.
  • Cited by

    Periodical cited type(25)

    1. 郑剑,陈陆望,张杰,张苗,郑忻,胡永胜. 贝叶斯突水水源判别与反向水文地球化学模拟的含水层水力分析. 合肥工业大学学报(自然科学版). 2025(02): 203-211 .
    2. 蒋欣静,李仲夏,万军伟,成建梅,王志明,王玲,王铭. 柳家村隧洞水化学特征分析及涌水水源判别方法研究. 安全与环境工程. 2024(04): 158-169 .
    3. 张强,胡志伟,王毛毛,周成号. 基于主成分自组织神经网络法的测井曲线分层技术. 地质与勘探. 2024(05): 1013-1020 .
    4. 施龙青,曲兴玥,韩进. 黄土梁峁地貌矿井水水质时空变异评估与关键控制因子水源识别. 煤田地质与勘探. 2023(02): 195-206 . 本站查看
    5. 陈陆望,胡永胜,张杰,张苗,郑剑,郑忻,张媛媛,蔡欣悦,武明辉. 华北型煤田水文地球化学勘探关键技术研究进展. 煤田地质与勘探. 2023(02): 207-219 . 本站查看
    6. 赵世毫,高林,陈原望,蒋明,向天麟,申业兴,许帅. 基于水化学特征分析的近地表井壁涌水来源识别技术. 矿业研究与开发. 2023(11): 150-156 .
    7. 张苗,陈陆望,姚多喜,张杰. 宿县矿区石炭系太灰地下水化学特征及水岩相互作用. 合肥工业大学学报(自然科学版). 2022(03): 396-405 .
    8. 苏玮,姜春露,查君珍,郑刘根,谢华东,黄文迪,陈园平. 基于客观组合权-改进集对分析模型的矿井突水水源识别. 煤炭科学技术. 2022(04): 156-164 .
    9. 张胜军,丁亚恒,姜春露,李明,郑刘根. 基于水化学和氯同位素的煤矿矿井水来源识别与解析. 煤炭工程. 2022(06): 123-127 .
    10. 毛志勇,崔鹏杰,黄春娟,韩榕月. KPCA-CS-SVM下的矿井突水水源判别模型. 辽宁工程技术大学学报(自然科学版). 2021(02): 104-111 .
    11. 满孝全,魏久传,谢道雷,谢春雷. 基于水化学特征分析的突水水源判别方法. 中国科技论文. 2021(01): 76-81+90 .
    12. 朱敬忠,李凌,杨森. 基于因子分析的突水水源类型判别的研究. 矿业安全与环保. 2021(02): 87-91+96 .
    13. 施亚丽,吴基文,翟晓荣,王广涛,洪荒,毕尧山. 采动影响下皖北恒源煤矿八含水化学特征研究. 安徽理工大学学报(自然科学版). 2021(01): 31-40 .
    14. 苏俏俏,黄平华,丁风帆,胡永胜,郜鸿飞. 基于Piper-PCA-Fisher模型的矿井突水水源识别. 能源与环保. 2021(10): 122-127 .
    15. 李凌,胡友彪,刘瑜,琚棋定. 基于多元统计与Bayes判别模型的水源判别. 安徽理工大学学报(自然科学版). 2021(06): 25-31 .
    16. 刘小贺. 主成分-距离水质识别水源模型主成分的选取. 地下水. 2020(02): 23-26 .
    17. 姜子豪,胡友彪,琚棋定,周露,张淑莹. 矿井突水水源判别方法. 工矿自动化. 2020(04): 28-33 .
    18. 马济国,姜春露,朱赛君,谢毫,毕波,郑刘根. 基于主成分分析的潘谢矿区突水水源Fisher判别模型. 煤炭技术. 2020(09): 132-134 .
    19. 张靖苑. 基于主成分分析和随机配置网络的矿井突水水源判别方法研究. 煤炭工程. 2020(S2): 101-104 .
    20. 题正义,张峰,秦洪岩,朱志洁. 基于板壳和断裂力学理论的上覆采空区积水危险性判定技术. 煤田地质与勘探. 2019(01): 138-143 . 本站查看
    21. 刘国伟,马凤山,郭捷,杜云龙,侯成录,李威. 多元统计分析在滨海矿区水源识别中的应用——以三山岛金矿为例. 黄金科学技术. 2019(02): 207-215 .
    22. 董东林,李祥,林刚,卞建玲,曹成龙,吴恒. 突水水源的独立性权–模糊可变理论识别模型. 煤田地质与勘探. 2019(05): 48-53 . 本站查看
    23. 张宇,彭琪,曾开帅,唐金平,何文君,张强. Bayes判别理论在陇西黄土高原地区地下水化学分类中的应用. 甘肃水利水电技术. 2019(10): 1-5 .
    24. 邓松松. 超化煤矿突水灾害地质条件分析及防治措施. 能源与节能. 2018(06): 38-39 .
    25. 琚棋定,胡友彪,张淑莹. 基于主成分分析与贝叶斯判别法的矿井突水水源识别方法研究. 煤炭工程. 2018(12): 90-94 .

    Other cited types(16)

Catalog

    Article Metrics

    Article views (53) PDF downloads (5) Cited by(41)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return