LIN Peng, PENG Suping, LU Yongxu, WANG Taotao. Full waveform inversion based on the conjugate gradient method[J]. COAL GEOLOGY & EXPLORATION, 2017, 45(1): 131-136,142. DOI: 10.3969/j.issn.1001-1986.2017.01.026
Citation: LIN Peng, PENG Suping, LU Yongxu, WANG Taotao. Full waveform inversion based on the conjugate gradient method[J]. COAL GEOLOGY & EXPLORATION, 2017, 45(1): 131-136,142. DOI: 10.3969/j.issn.1001-1986.2017.01.026

Full waveform inversion based on the conjugate gradient method

Funds: 

National Key Research and Development Program(2016YFC0501102)

More Information
  • Received Date: December 14, 2015
  • Published Date: February 24, 2017
  • Full waveform inversion is a new seismic imaging method, which mainly uses full waveform information to inverse parameters of medium in the subsurface, and realizes waveform inversion by minimizing the residual between observed wavefield and theoretical wavefield using nonlinear optimization methods. The objective function of wavefield residual was established based on time domain acoustic wave equation. To test the capability of conjugate gradient(CG) algorithm and BFGS Quasi-Newton algorithm, waveform inversion was applied to a hierarchical model. The inversion effect was compared from wavefield precision, objective function convergence and running time respectively. The CG method was used to reconstruct velocity model on positive, reverse fault and Marmousi models. The inversion results show that the CG method has higher computation efficiency and inversion precision. The CG method is a promising method for full waveform inversion.
  • [1]
    LAILLY P. The seismic inverse problem as a sequence of beforestack migrations[C]//Conference on Inverse Scattering:Theory and Applications. Philadelphia:Society for Industrial and Applied Mathematics,1983:206-220.
    [2]
    TARANTOLA A. Inversion of seismic reflection data in the acoustic approximation[J]. Geophysics, 1984, 49(8):1259-1266.
    [3]
    TARANTOLA A. A strategy for nonlinear elastic inversion of seismic reflection data[J]. Geophysics, 1986, 51(10):1893-1903.
    [4]
    PRATT R, SHIN C, HICKS G. Gauss-Newton and full Newton methods in frequency-space seismic waveform inversion[J]. Geophysical Journal International,1998,133(2):341-362.
    [5]
    PRATT R. Seismic waveform inversion in the frequency domain, Part1:Theory and verification in a physical scale model[J]. Geophysics,1999,64(3):888-901.
    [6]
    PRATT R,SHIPP R. Seismic waveform inversion in the frequency domain,Part2:Fault delineation in sediments using crosshole data[J]. Geophysics,1999,64(3):902-914.
    [7]
    SHIN C,HO C. Waveform inversion in the Laplace domain[J]. Geophysical Journal International,2008,173(3):922-931.
    [8]
    SHIN C,HO C. Waveform inversion in the Laplace-Fourier domain[J]. Geophysical Journal International,2009,177(3):1067-1079.
    [9]
    SHIN C. Laplace-domain full-waveform inversion of seismic data lacking low-frequency information[J]. Geophysics,2012, 77(5):199-206.
    [10]
    MORA P. Nonlinear two-dimensional elastic inversion of multioffset seismic data[J]. Geophysics,1987,52(9):1211-1228.
    [11]
    MORA P. Elastic wave-field inversion of reflection and transmission data[J]. Geophysics,1988,53(6):750-759.
    [12]
    RAVAUT C, OPERTO S, IMPORTA L, et al. Multiscale imaging of complex structures from multifold wide-aperture seismic data by frequency-domain full-waveform tomography:Application to a thrust belt[J]. Geophysical Journal International, 2004, 159(3):1032-1056.
    [13]
    SIRGUE L,PRAAT R. Efficient waveform inversion and imaging:A strategy for selecting temporal frequencies[J]. Geophysics,2004,69(1):231-248.
    [14]
    METIVIER L, BROSSOER R, VIRIEUX J, et al. Full waveform inversion and the truncated Newton method[J]. Society for Industrial and Applied Mathematics Journal on Scientific Computing,2013,35(2):401-437.
    [15]
    MéTIVIER L,BRETAUDEAU F,BROSSIER R,et al. Full waveform inversion and the truncated Newton method:Quantitative imaging of complex subsurface structures[J]. Geophysical Prospecting,2014,62(6):1353-1375.
    [16]
    刘璐, 刘洪, 张衡, 等. 基于修正拟牛顿公式的全波形反演[J]. 地球物理学报,2013,56(7):2447-2451.

    LIU Lu,LIU Hong,ZHANG Heng,et al. Full waveform inversion based on modified quasi-Newton equation[J]. Chinese Journal Geophysics(in Chinese),2013,56(7):2447-2451.
    [17]
    王义,董良国. 基于截断牛顿法的VTI介质声波多参数全波形反演[J]. 地球物理学报,2015,58(8):2873-2885.

    WANG Yi,DONG Liangguo. Multi-Parameter full waveform inversion for acoustic VTI media using the truncated Newton method[J]. Chinese Journal Geophysics(in Chinese),2015, 58(8):2873-2885.
    [18]
    刘玉柱,王光银,杨积忠,等. 基于Born敏感核函数的VTI介质多参数全波形反演[J]. 地球物理学报,2015,58(4):1305-1316.

    LIU Yuzhu, WANG Guangyin, YANG Jizhong, et al. Multi-parameter full waveform inversion for VTI media based on Born sensitivity kernels[J]. Chinese Journal Geophysics(in Chinese),2015,58(4):1305-1316.
    [19]
    胡光辉,王立歆,方伍宝,等. 全波形反演及应用[M]. 北京:石油工业出版社,2014.
    [20]
    陈洪杰. 基于声波方程的数值模拟与逆时偏移方法研究[D]. 长春:吉林大学,2010.
    [21]
    PLESSIX R E. A review of the adjoint-state method for computing the gradient of a functional with geophysical applications[J]. Geophysical Journal International,2006,167(2):495-503.
    [22]
    高凤霞. 频率域波动方程多参数全波形反演方法研究[D]. 长春:吉林大学,2014.
    [23]
    HESTENES M R E, STIEFEL E. Methods of conjugate gradients for solving linear systems[J]. Journal of Research of the National Bureau of Standards, 1952,49(6):409-436.
    [24]
    DAI Y,YUAN Y. A nonlinear conjugate gradient method with a strong global convergence property[J]. Society for Industrial and Applied Mathematics Journal on Optimization,1999,10(1):177-182.
  • Cited by

    Periodical cited type(3)

    1. 刘俊博,许巍,段威,胡宇博,李浩. 高温高压条件煤复电阻率频散特性实验研究. 当代化工. 2022(10): 2300-2306 .
    2. 唐纤,唐新功,向葵,童小龙. 基于Debye分解的岩石电性与孔渗参数关系探讨. 科学技术与工程. 2021(18): 7461-7466 .
    3. 孟慧,李健,雷东记,王亚娟. 煤体复电性频散响应实验研究. 煤田地质与勘探. 2020(04): 226-232 . 本站查看

    Other cited types(3)

Catalog

    Article Metrics

    Article views (294) PDF downloads (51) Cited by(6)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return