Geological technological innovations and contributions in the exploration and development of the Shenfu coalfield
-
摘要:背景
神府煤田(即陕北侏罗纪煤田)的发现和探明,是我国“六五”期间煤炭工业最重要的成就,由此拉开了我国煤炭工业战略西移的序幕。神府煤田勘探与发现的道路曲折,科技创新成就珍贵,总结煤田地质勘查和研究进展,对我国西部煤炭主产区的地质工作、绿色开发具有重要启示和借鉴。
进展一是聚煤模式和聚煤规律的研究,从早期的河流沉积和煤层呈鸡窝状分布的不当认识,转变到大型湖泊三角洲沉积以及发育5个连续沉积的煤层(组)的客观认识,促进了普查找煤工程部署和快速完成。二是煤田勘探从早期按部就班套用“规范”,转变到榆神矿区勘探阶段大胆创新,提出了“沙漠煤田综合勘探技术”并推广应用,大幅度缩短了勘探周期,降低了勘探成本,提高了对煤层、地层和各类地质界线的控制程度,在20世纪90年代末期国家地质勘探投入不足的情况下,促成了榆神矿区及早开发。三是保水采煤科学理念的提出和科学技术体系的创建,创新了煤田开发生态环境保护的思路和方法。在神府煤田开发初期就关注到地下水水位管控和生态环境保护,建成了我国首张省级煤矿地下水监测预警网,监测站点涵盖神府煤田所有煤矿和规划区,促进了煤田开发的可持续发展。四是突水溃沙灾害、地面沉降和地裂缝等灾害防控、生态修复技术创新与应用,促进了绿色矿区建设,建成了和谐矿区、绿色矿山。
启示国家重大需求是推动神府煤田发现与勘探的重要契机,科技创新是推动煤田勘探进展和科学勘探的主要驱动力,产−学−研的有机结合是科技创新和产业发展的最佳途径。
展望高分辨沉积环境研究、透明地质大模型构建、深部煤层开采矿井水源头减水、高强度采煤条件下含水层结构保护和生态修复,无疑是今后神府煤田地质科技创新的重要方向。
Abstract:BackgroundThe discovery and exploration of the Shenfu coalfield (i.e., a Jurassic coalfield in northern Shaanxi Province) represent the most significant achievement in China’s coal industry during the 6th Five-Year Plan of the country, marking the onset of the strategic westward shift of China’s coal industry. The complex discovery and exploration processes of the Shenfu coalfield have yielded valuable technological innovations. A summary of advances in the geological exploration and research of this coalfield will provide significant implications and references for the geologic work and green development of major coal-producing areas in West China.
AdvancesFirst, research on the coal accumulation patterns has shifted to an objective understanding of large-scale lacustrine and deltaic sedimentary environments and five continuously deposited coal seams (formations) from the early misconception of a fluvial sedimentary environment and a chicken-nest-shaped distribution of coal seams. This sift has promoted the deployment and rapid completion of reconnaissance surveys and coal prospecting. Second, coalfield exploration has shifted from the early application of prescribed norms to bold innovations in the exploration stage of the Yushen mining area. Specifically, the integrated exploration technology for coalfields in desert areas was proposed and widely applied, significantly shortening the exploration cycle, reducing exploration costs, and enhancing the control over coal seams, strata, and various geological boundaries. As a result, despite insufficient national investment in geological exploration in the late 1990s, this technology accelerated the development of the Yushen mining area. Third, the introduction of the scientific concept of water-preserved coal mining and the establishment of the corresponding scientific and technological system represent innovations in the philosophy and methods of ecological conservation in coalfield development. Groundwater level control and ecological conservation were emphasized even during the initial exploitation of the Shenfu coalfield. China’s first provincial-level monitoring and early warning network has been established for groundwater in coal mines within the coalfield, with monitoring stations covering all coal mines and planning areas in the Shenfu coalfield. This facilitates sustainable coalfield development. Fourth, the technological innovations and application in the prevention and control of water inrushes, sand collapse, land subsidence, and geofractures, as well as relevant ecological restoration, have accelerated the construction of green mining areas, creating green mines in harmonious mining areas.
ImplicationsThe huge national demand creates a great opportunity for the discovery and exploration of the Shenfu coalfield. Technological innovations act as the driving force behind the exploration progress and scientific exploration of the coalfield. Furthermore, the organic industry-university-institute collaboration represents the optimal approach to technological innovations and industrial development.
ProspectsThe geological technological innovation targets of the Shenfu coalfield will undoubtedly include investigating sedimentary environments using high-resolution survey methods, constructing large transparent geological models, reducing mine water production through source control for deep coal seam mining, and achieving aquifer structure protection and ecological restoration under high-intensity coal mining.
-
-
表 1 神府煤田发现之前的重要地质调查工作统计
Table 1 Statistics of important geological surveys before the discovery of the Shenfu coalfield
时间 任务来源 调查单位(个人) 主要工作量或认识 报告名称 提交资源量 1917—1923 王竹泉等 侏罗纪煤系煤层厚0.67~
4.00 m,向西缓倾,倾角1°~4°,属烟煤《中国地质图》太原
榆林幅说明书预测榆林−太原侏罗纪
煤904.5亿t1923—1933 潘钟祥、王竹泉等 地层、古生物研究 陕北古期中生代植物化石 1931—1942 张广石 调查全省73个县中,
51个县123处有煤《陕西矿产一览表》《陕西之煤业》《陕西煤炭业
过去现在将来》等总储量为719.5亿t
陕北660亿t1956 陕西省工业厅 陕西省工业厅经济资源调查勘测队 府谷神木与横山靖边沿线
地质矿产初步了解报告1958-07 郑州煤田地质学校
(现河南地矿职业学院)1∶10万地质图,
2 500 km2陕西省北部榆林神木区域侏罗纪煤田踏勘报告 1958 国家计划项目
《第一次全国煤田预测》陕西省煤炭工业局 陕西省煤田预测报告 4 091亿t(其中探明26亿t) 1958-09—12 榆林煤田勘探队(陕西省一八六煤田地质勘探队前身,下称186队) 钻孔7个,进尺474 m 金刚寺井田简易地质报告 232万t 1958-11 陕西省
煤炭工业局省局工作组配合榆林
煤田地质勘探队调查煤矿点数10处 陕北府谷、神木两煤田
概要说明估算侏罗纪煤384亿t,
石炭纪煤51亿t1959 186队 普查面积662.45 km2 陕北侏罗纪煤田横山矿区
波罗韩岔间普查勘探报告C1+C2级13.98亿t 1960 186队 普查面积309.41 km2 陕北侏罗纪煤田榆林矿区归德堡至古城滩间普查
勘探报告7 432万t 1961-05 186队 榆林、靖边、绥德普查
面积约1 167 km2陕北侏罗纪煤田韩岔吴家
园子杨桥畔间地质资料C1级+C2级资源储量
17 348万t1963-11 西北煤田地质局
194勘探队神木、府谷普查面积
6 000 km2陕北神木府谷地区煤田
地质初步踏勘报告估算石炭−二叠纪煤
29.44亿t;侏罗纪煤
24.96亿t1974—1981 国家计划项目
《第二次全国
煤田预测》陕西省煤田地质
勘探公司划分出渭北石炭−二叠纪煤田、黄陇侏罗纪煤田、陕北侏罗纪煤田、陕北三叠纪煤田、陕北石炭−二叠纪煤田 陕西省煤田预测报告 全省含煤5.84万km2,埋深2 000 m以浅资源总量
2 926.7亿t,其中探明资源的含煤面积5 831 km2,
探明资源储量268.3亿t1974 陕西省地质局第14队 陕西省榆林地区横山−定边普查及横山塔湾煤矿
地质报告C+D级储量3 579.5万t 1976 185队 陕北侏罗纪煤田横山县樊家河井田精查地质报告,
波罗井田精查地质报告樊家河井田:3 989万t;
波罗井田:7 552.30万t -
[1] 王绪柱,赵云祥,朱玉琴,等. 陕北早中侏罗世含煤岩系沉积环境[M]. 西安:陕西科学技术出版社,1989. [2] 王双明,吕道生,佟英梅,等. 鄂尔多斯盆地聚煤规律及煤炭资源评价[M]. 北京:煤炭工业出版社,1996. [3] 李思田,程守田,杨士恭,等. 鄂尔多斯盆地东北部层序地层及沉积体系分析:侏罗系富煤单元的形成、分布及预测基础[M]. 北京:地质出版社,1992. [4] 李思田. 含能源盆地沉积体系:中国内陆和近海主要沉积体系类型的典型分析[M]. 武汉:中国地质大学出版社,1996. [5] 李宝芳. 鄂尔多斯盆地中部下中侏罗统沉积体系和层序地层[M]. 北京:地质出版社,1995. [6] 晋香兰,张泓. 鄂尔多斯盆地侏罗系成煤系统[J]. 煤炭学报,2014,39(增刊1):191−197. JIN Xianglan,ZHANG Hong. Jurassic coal system in the Ordos Basin[J]. Journal of China Coal Society,2014,39(Sup.1):191−197.
[7] 范立民. 神木矿区的主要环境地质问题[J]. 水文地质工程地质,1992,19(6):37−40. FAN Limin. Environmental geology in Shenmu mining area[J]. Hydrogeology and Engineering Geology,1992,19(6):37−40.
[8] 范立民. 论保水采煤问题[J]. 煤田地质与勘探,2005,33(5):50−53. FAN Limin. Discussing on coal mining under water–containing condition[J]. Coal Geology & Exploration,2005,33(5):50−53.
[9] 顾大钊. 晋陕蒙接壤区大型煤炭基地地下水保护利用与生态修复[M]. 北京:科学出版社,2015. [10] 范立民,孙强,马立强,等. 论保水采煤技术体系[J]. 煤田地质与勘探,2023,51(1):196−204. FAN Limin,SUN Qiang,MA Liqiang,et al. Technological system of water–conserving coal mining[J]. Coal Geology & Exploration,2023,51(1):196−204.
[11] 范立民,马雄德. 保水采煤的理论与实践[M]. 北京:科学出版社,2019. [12] 范立民,马立强,蒋泽泉,等. 保水采煤知多少[M]. 武汉:中国地质大学出版社,2023. [13] 王双明,范立民,王国柱. 沙漠煤田综合勘探技术在榆神府矿区的应用[J]. 煤炭工程,2007,39(1):37−39. [14] 彭苏萍,毕银丽. 西部干旱半干旱煤矿区生态环境损伤特征及修复机制[J]. 煤炭学报,2024,49(1):57−64. PENG Suping,BI Yinli. Properties of ecological environment damage and their mechanism of restoration in arid and semi–arid coal mining area of Western China[J]. Journal of China Coal Society,2024,49(1):57−64.
[15] 彭苏萍,毕银丽. 黄河流域煤矿区生态环境修复关键技术与战略思考[J]. 煤炭学报,2020,45(4):1211−1221. PENG Suping,BI Yinli. Strategic consideration and core technology about environmental ecological restoration in coal mine areas in the Yellow River Basin of China[J]. Journal of China Coal Society,2020,45(4):1211−1221.
[16] 段中会,贺丹,杨宏科. 神府煤田的地质工作历史与展望[J]. 中国煤炭地质,2023,35(6):38−43. DUAN Zhonghui,HE Dan,YANG Hongke. History and prospect of geological work in Shenfu Coalfield[J]. Coal Geology of China,2023,35(6):38−43.
[17] 季成龙. 陕西省煤田地质勘探史[R]. 西安:陕西省煤田地质勘探公司,1989. [18] 里丁 H G. 沉积环境和相[M]. 周明鉴,陈昌明,张疆,等,译. 北京:科学出版社,1985. [19] 斯科特 A C. 煤及含煤地层研究新进展[M]. 毛邦倬,译. 西安:陕西科学技术出版社,1992. [20] 陕西省煤田地质勘探公司,鄂尔多斯项目管理办公室 编. 煤及含煤地层沉积学译文集−第十一届国际沉积学大会《煤和含煤地层》专辑[R]. 西安:陕西省煤田地质勘探公司,1987. [21] 陈钟惠. 煤和含煤岩系的沉积环境[M]. 武汉:中国地质大学出版社,1988. [22] 武汉地质学院煤田教研室. 煤田地质学(上册)[M]. 北京:地质出版社,1979. [23] 武汉地质学院煤田教研室. 煤田地质学(下册)[M]. 北京:地质出版社,1981. [24] 毛节华,许惠龙. 中国煤炭资源预测与评价[M]. 北京:科学出版社,1999. [25] 张韬. 中国主要聚煤期沉积环境与聚煤规律[M]. 北京:地质出版社,1995. [26] 张韬. 大型湖泊三角洲与聚煤作用[M]. 北京:地质出版社,1993. [27] 张泓,李恒堂,熊存卫,等. 中国西北侏罗纪含煤地层与聚煤规律[M]. 北京:地质出版社,1998. [28] 李思田,杨士恭,黄家福,等. 论聚煤盆地分析的基本参数和流程[J]. 煤田地质与勘探,1983,11(6):1−11. [29] 李思田. 沉积盆地分析中的沉积体系研究[J]. 矿物岩石地球化学通报,1988,7(2):90−92. LI Sitian. Study on sedimentary system in sedimentary basin analysis[J]. Bulletin of Mineralogy,Petrology and Geochemistry,1988,7(2):90−92.
[30] 张泓,何宗莲,晋香兰,等. 鄂尔多斯盆地构造演化与成煤作用:1∶500 000鄂尔多斯盆地地质构造图简要说明[M]. 北京:地质出版社,2005. [31] 范立民,寇贵德,侯飞龙. 榆神低硫煤中硫含量特征及成因探讨[J]. 中国煤田地质,2003,15(2):12−13. FAN Limin,KOU Guide,HOU Feilong. Probe into features and geneses of sulfur content in low–sulfur coal of Yushen mining area[J]. Coal Geology of China,2003,15(2):12−13.
[32] 李思田,杨士恭,解习农,等. 鄂尔多斯延安组湖泊三角洲沉积体系的演化以及这一体系与赣江三角洲的比较沉积学研究[J]. 地质科学译丛,1990(1):92−93. [33] 焦养泉,李思田,杨士恭. 三角洲–湖泊沉积体系及聚煤研究:以鄂尔多斯盆地神木地区延安组Ⅱ单元为例[J]. 地球科学,1992,17(2):113−120. JIAO Yangquan,LI Sitian,YANG Shigong. Delta–lacustrine depositional system and coal accumulation research[J]. Earth Science,1992,17(2):113−120.
[34] 李智民,陈磊,温道明. 陕北侏罗纪煤田榆横地区延安组沉积环境分析和聚煤征特[J]. 陕西地质,1985,3(2):15−30. LI Zhimin,CHEN Lei,WEN Daoming. Analysis on the sedimentary environment of Yan’an Formation and the features of accumulation coal in Jurassic Coalfield in Yulin and Hengshan areas,the north of Shaanxi[J]. Geology of Shaanxi,1985,3(2):15−30.
[35] 李智民. 鄂尔多斯盆地侏罗纪坳陷湖泊的淤浅机制和聚煤作用[M]. 北京:地质出版社,1992. [36] 焦养泉,吴立群,荣辉,等. 鄂尔多斯盆地直罗组聚煤规律及其对古气候和铀成矿环境的指示意义[J]. 煤炭学报,2021,46(7):2331−2345. JIAO Yangquan,WU Liqun,RONG Hui,et al. Coal accumulation regularity of Zhiluo Formation and its indication to paleoclimate and uranium metallogenic environment,Ordos Basin[J]. Journal of China Coal Society,2021,46(7):2331−2345.
[37] 焦养泉. 聚煤盆地沉积学[M]. 武汉:中国地质大学出版社,2015. [38] 韩树青,范立民. 对陕北侏罗纪煤田水文地质勘探方法的意见[J]. 煤田地质与勘探,1991,19(3):45−46. [39] 范立民,蒋泽泉. 烧变岩地下水的形成及保水采煤新思路[J]. 煤炭工程,2006,38(4):40−41. DOI: 10.3969/j.issn.1671-0959.2006.04.016 [40] 范立民,仵拨云,向茂西,等. 我国西部保水采煤区受保护烧变岩含水层研究[J]. 煤炭科学技术,2016,44(8):1−6. FAN Limin,WU Boyun,XIANG Maoxi,et al. Study on protective burnt rock aquifer in water preserved coal mining area of western China[J]. Coal Science and Technology,2016,44(8):1−6.
[41] 岳建华,曹璎璐,李志聃. 多煤层自燃磁异常的小波分析[J]. 煤炭学报,1996,21(3):296−300. YUE Jianhua,CAO Yinglu,LI Zhidan. Wavelet analysis of magnetic anomaly resulted from spontaneous ignition of a multiple coal seams[J]. Journal of China Coal Society,1996,21(3):296−300.
[42] 于景村. 多层烧变岩磁异常正演模拟研究[J]. 中国矿业大学学报,1999,28(4):386−388. YU Jingcun. Forward modeling of magnetic anomaly of the multilayer burned coal tanks[J]. Journal of China University of Mining & Technology,1999,28(4):386−388.
[43] 万兆昌,祁明星,陈双喜. 综合物探圈定多煤层自燃边界[J]. 中国煤田地质,1996,8(2):53−56. [44] 祁明星,万兆昌. 陕北煤田火区磁探工作方法及效果[J]. 物探与化探,1987,11(4):291−297. QI Mingxing,WAN Zhaochang. Techniques and effects of magnetic prospecting in fire area of the northern Shaanxi Coalfield[J]. Geophysical and Geochemical Exploration,1987,11(4):291−297.
[45] 王中锋. 沙漠覆盖区煤层的地震勘探及效果[J]. 中国煤田地质,1998,10(1):56−58. [46] 朱芳香,王中锋,万兆昌. 地球物理探测在陕北侏罗纪煤田勘探中的应用[J]. 陕西煤炭,2001,20(4):36−39. DOI: 10.3969/j.issn.1671-749X.2001.04.011 [47] 朱芳香,刘天放. 陕北侏罗纪煤田煤厚解释方法研究及应用效果[J]. 中国煤田地质,2002,14(1):60−63. ZHU Fangxiang,LIU Tianfang. Study on coal–layer thickness interpretation method of Jurassic Coal Field in northern Shaanxi Province and its effect of application[J]. Coal Geology of China,2002,14(1):60−63.
[48] 冯西会,王中锋,朱芳香. 毛乌素沙漠地震勘探历程及效果[J]. 中国煤炭地质,2008,20(6):30−32. FENG Xihui,WANG Zhongfeng,ZHU Fangxiang. The course and effect of seismic prospecting in Mu Us Desert[J]. Coal Geology of China,2008,20(6):30−32.
[49] 王佟. 中国煤炭地质综合勘查理论与技术新体系[M]. 北京:科学出版社,2013. [50] 卢新明,阚淑婷. 煤炭精准开采地质保障与透明地质云计算技术[J]. 煤炭学报,2019,44(8):2296−2305. LU Xinming,KAN Shuting. Geological guarantee and transparent geological cloud computing technology of precision coal mining[J]. Journal of China Coal Society,2019,44(8):2296−2305.
[51] 彭苏萍. 中国煤矿高产高效矿井地质保障系统[J]. 河北煤炭,1999(增刊1):1−4. [52] 彭苏萍. 我国煤矿安全高效开采地质保障系统研究现状及展望[J]. 煤炭学报,2020,45(7):2331−2345. PENG Suping. Current status and prospects of research on geological assurance system for coal mine safe and high efficient mining[J]. Journal of China Coal Society,2020,45(7):2331−2345.
[53] 彭苏萍,李恒堂. 煤矿安全高效开采地质保障技术[M]. 徐州:中国矿业大学出版社,2007. [54] 王国法,巩师鑫,申凯. 煤矿智能安控技术体系与高质量发展对策[J]. 矿业安全与环保,2023,50(5):1−8. WANG Guofa,GONG Shixin,SHEN Kai. Intelligent security control technology system and high–quality development countermeasures for coal mines[J]. Mining Safety & Environmental Protection,2023,50(5):1−8.
[55] 王国法,张建中,薛国华,等. 煤矿回采工作面智能地质保障技术进展与思考[J]. 煤田地质与勘探,2023,51(2):12−26. WANG Guofa,ZHANG Jianzhong,XUE Guohua,et al. Progress and reflection of intelligent geological guarantee technology in coal mining face[J]. Coal Geology & Exploration,2023,51(2):12−26.
[56] 程建远,李鹏,晋香兰. 神奇的透明地质[M]. 北京:应急管理出版社,2024. [57] 程建远,朱梦博,王云宏,等. 煤炭智能精准开采工作面地质模型梯级构建及其关键技术[J]. 煤炭学报,2019,44(8):2285−2295. CHENG Jianyuan,ZHU Mengbo,WANG Yunhong,et al. Cascade construction of geological model of longwall panel for intelligent precision coal mining and its key technology[J]. Journal of China Coal Society,2019,44(8):2285−2295.
[58] 刘再斌,董书宁,李鹏,等. 智能开采透明工作面技术架构与展望[J]. 智能矿山,2020,1(1):46−51. [59] 夏玉成,孙学阳,苗霖田,等. 智能时代的矿井地质工作展望:矿井开采智能地质保障技术体系架构[J/OL]. 煤田地质与勘探,2024:1–14 [2024-11-26]. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=MDKT20241126001&;dbname=CJFD&dbcode=CJFQ. XIA Yucheng,SUN Xueyang,MIAO Lintian,et al. Prospects for mine geological work in the Age of Intelligence:The architecture of intelligent geological support technology system for coal mining[J/OL]. Coal Geology & Exploration,2024:1–14 [2024-11-26]. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=MDKT20241126001&;dbname=CJFD&dbcode=CJFQ.
[60] 范立民. 陕北煤炭基地规划中几个关键技术问题的探讨[J]. 陕西煤炭,2005,24(1):3−6. DOI: 10.3969/j.issn.1671-749X.2005.01.001 FAN Limin. Discussion on some key problems in the planning of Shaanbei Coal Base[J]. Shaanxi Coal,2005,24(1):3−6. DOI: 10.3969/j.issn.1671-749X.2005.01.001
[61] 谢克昌. 能源“金三角”发展战略研究[M]. 北京:化学工业出版社,2015. [62] 彭苏萍,张博,王佟,等. 煤炭资源与水资源[M]. 北京:科学出版社,2014. [63] 谢和平. 煤炭安全、高效、绿色开采技术与战略研究[M]. 北京:科学出版社,2014. [64] 孙学阳,夏玉成. 陕北侏罗纪煤田地质环境承载力研究[M]. 北京:科学出版社,2009. [65] 范立民,马雄德,蒋泽泉,等. 保水采煤研究30年回顾与展望[J]. 煤炭科学技术,2019,47(7):1−30. FAN Limin,MA Xiongde,JIANG Zequan,et al. Review and thirty years prospect of research on water–preserved coal mining[J]. Coal Science and Technology,2019,47(7):1−30.
[66] 马立强,张东升,王烁康,等. “采充并行”式保水采煤方法[J]. 煤炭学报,2018,43(1):62−69. MA Liqiang,ZHANG Dongsheng,WANG Shuokang,et al. Water–preserved mining with the method named“backfilling while mining”[J]. Journal of China Coal Society,2018,43(1):62−69.
[67] 马立强,王烁康,余伊河,等. 壁式连采连充保水采煤技术及实践[J]. 采矿与安全工程学报,2021,38(5):902−910. MA Liqiang,WANG Shuokang,YU Yihe,et al. Technology and practice of continuous mining and backfilling with wall system for water conservation[J]. Journal of Mining & Safety Engineering,2021,38(5):902−910.
[68] 范立民. 黄河中游一级支流窟野河断流的反思与对策[J]. 地下水,2004,26(4):236−237. FAN Limin. Consideration & countermeasure on water interception of Kuye River 1st level branch in middle reaches of Yellow River[J]. Groundwater,2004,26(4):236−237.
[69] 马雄德,王文科,范立民,等. 生态脆弱矿区采煤对泉的影响[J]. 中国煤炭地质,2010,22(1):32−36. DOI: 10.3969/j.issn.1674-1803.2010.01.07 MA Xiongde,WANG Wenke,FAN Limin,et al. Coal mining impacting on springs in ecologically fragile mining area[J]. Coal Geology of China,2010,22(1):32−36. DOI: 10.3969/j.issn.1674-1803.2010.01.07
[70] 范立民,向茂西,彭捷,等. 毛乌素沙漠与黄土高原接壤区泉的演化分析[J]. 煤炭学报,2018,43(1):207−218. FAN Limin,XIANG Maoxi,PENG Jie,et al. Evolution analysis on springs in contiguous area of Maowusu Desert and Loess Plateau[J]. Journal of China Coal Society,2018,43(1):207−218.
[71] 范立民,向茂西,彭捷,等. 西部生态脆弱矿区地下水对高强度采煤的响应[J]. 煤炭学报,2016,41(11):2672−2678. FAN Limin,XIANG Maoxi,PENG Jie,et al. Groundwater response to intensive mining in ecologically fragile area[J]. Journal of China Coal Society,2016,41(11):2672−2678.
[72] 马雄德,范立民,张晓团,等. 榆神府矿区水体湿地演化驱动力分析[J]. 煤炭学报,2015,40(5):1126−1133. MA Xiongde,FAN Limin,ZHANG Xiaotuan,et al. Driving force analysis for water and wetlands evolution at Yushenfu mining area[J]. Journal of China Coal Society,2015,40(5):1126−1133.
[73] 冀瑞君,彭苏萍,范立民,等. 神府矿区采煤对地下水循环的影响:以窟野河中下游流域为例[J]. 煤炭学报,2015,40(4):938−943. JI Ruijun,PENG Suping,FAN Limin,et al. Effect of coal exploitation on groundwater circulation in the Shenfu mine area:An example from middle and lower reaches of the Kuye River Basin[J]. Journal of China Coal Society,2015,40(4):938−943.
[74] 杨泽元,王文科,黄金廷,等. 陕北风沙滩地区生态安全地下水位埋深研究[J]. 西北农林科技大学学报 (自然科学版),2006,34(8):67−74. YANG Zeyuan,WANG Wenke,HUANG Jinting,et al. Research on buried depth of eco–safety about groundwater table in the blown–sand region of the northern Shaanxi Province[J]. Journal of Northwest A & F University(Natural Science Edition),2006,34(8):67−74.
[75] 范立民,马雄德,杨泽元. 论榆神府区煤炭开发的生态水位保护[J]. 矿床地质,2010,29(增刊1):1043−1044. [76] 王双明,黄庆享,范立民,等. 生态脆弱区煤炭开发与生态水位保护[M]. 北京:科学出版社,2010. [77] 国家安全监督总局,国家煤矿安监局,国家能源局,等. 建筑物、水体、铁路及主要井巷煤柱留设与压煤开采规范[S]. 北京:中国标准出版社,2017. [78] 康红普. 我国煤矿巷道围岩控制技术发展70年及展望[J]. 岩石力学与工程学报,2021,40(1):1−30. KANG Hongpu. Seventy years development and prospects of strata control technologies for coal mine roadways in China[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(1):1−30.
[79] 苏超,康红普,姜鹏飞,等. 基于连续实测的煤巷围岩掘–采期间采动应力演化与破坏模式分析[J]. 岩石力学与工程学报,2024,43(9):2201−2213. SU Chao,KANG Hongpu,JIANG Pengfei,et al. Analysis on mining–induced stress evolution and surrounding rock failure mode of roadway during heading–mining period based on continuous measurement[J]. Chinese Journal of Rock Mechanics and Engineering,2024,43(9):2201−2213.
[80] 赵兵朝. 榆神府矿区保水开采覆岩导水裂缝带发育高度研究[M]. 徐州:中国矿业大学出版社,2016. [81] 张杰. 浅埋煤层长壁间隔式保水开采技术基础研究[M]. 徐州:中国矿业大学出版社,2020. [82] 浦海. 保水采煤的隔水关键层模型及力学分析[M]. 徐州:中国矿业大学出版社,2014. [83] 夏玉成,代革联. 生态潜水流场的采煤扰动与优化调控[M]. 北京:科学出版社,2015. [84] 范立民,蒋泽泉. 厚煤层综采区冒落(裂)带高度的确定[J]. 中国煤田地质,2000,12(3):31−33. [85] 赵兵朝,冯杰,赵阳,等. 覆岩导水裂隙带发育高度动态演化规律研究[J]. 煤矿安全,2024,55(2):176−183. ZHAO Bingchao,FENG Jie,ZHAO Yang,et al. Study on dynamic evolution law of development height of overburden water–flowing fractured zone[J]. Safety in Coal Mines,2024,55(2):176−183.
[86] 周振方,董书宁,董阳,等. 蒙陕接壤区典型煤层开采顶板周期性变形破坏及涌水响应特征[J]. 煤田地质与勘探,2024,52(8):101−110. DOI: 10.12363/issn.1001-1986.24.03.0218 ZHOU Zhenfang,DONG Shuning,DONG Yang,et al. Periodic roof deformation and failure and associated water inflow characteristics during the mining of typical coal seams in the Inner Mongolia–Shaanxi contiguous area[J]. Coal Geology & Exploration,2024,52(8):101−110. DOI: 10.12363/issn.1001-1986.24.03.0218
[87] 许家林,王晓振,刘文涛,等. 覆岩主关键层位置对导水裂隙带高度的影响[J]. 岩石力学与工程学报,2009,28(2):380−385. XU Jialin,WANG Xiaozhen,LIU Wentao,et al. Effects of primary key stratum location on height of water flowing fracture zone[J]. Chinese Journal of Rock Mechanics and Engineering,2009,28(2):380−385.
[88] 陈海富. 榆树湾煤矿特厚煤层采动覆岩破坏规律及保水采煤方法适应性研究[D]. 徐州:中国矿业大学,2024. [89] 李智学. 陕北侏罗纪煤田榆神矿区地质控水规律及保水采煤地质分区研究[M]. 北京:地质出版社,2022. [90] 张发旺,周骏业,申保宏,等. 干旱地区采煤条件下煤层顶板含水层再造与地下水资源保护[M]. 北京:地质出版社,2006. [91] 李文平,王启庆,李小琴. 隔水层再造:西北保水采煤关键隔水层N2红土工程地质研究[J]. 煤炭学报,2017,42(1):88−97. LI Wenping,WANG Qiqing,LI Xiaoqin. Reconstruction of aquifuge:The engineering geological study of N2 laterite located in key aquifuge concerning coal mining with water protection in Northwest China[J]. Journal of China Coal Society,2017,42(1):88−97.
[92] 李涛,高颖,张嘉睿,等. 陕北保水采煤背景下MICP再造隔水土层的试验研究[J]. 煤炭学报,2021,46(9):2984−2994. LI Tao,GAO Ying,ZHANG Jiarui,et al. Experimental study on reconstruction of aquiclude by MICP under the background of water preserved coal mining in northern Shaanxi[J]. Journal of China Coal Society,2021,46(9):2984−2994.
[93] 蒋泽泉,王建文,王宏科. 浅埋煤层关键隔水层隔水性能及采动影响变化[J]. 中国煤炭地质,2011,23(4):26−31. JIANG Zequan,WANG Jianwen,WANG Hongke. Impermeability and mining impacts of key aquifuges for shallowly buried coal seams[J]. Coal Geology of China,2011,23(4):26−31.
[94] 曾一凡,包函,武强,等. 新近系保德组沉积薄弱区红土阻水性能及其资源开发意义[J]. 煤田地质与勘探,2023,51(10):62−71. ZENG Yifan,BAO Han,WU Qiang,et al. Water–blocking performance of laterite in weak deposition areas of Neogene Baode Formation and its significance of resource exploitation[J]. Coal Geology & Exploration,2023,51(10):62−71.
[95] 范立民,马雄德,吴群英,等. 保水采煤技术规范的技术要点分析[J]. 煤炭科学技术,2020,48(9):81−87. FAN Limin,MA Xiongde,WU Qunying,et al. Analysis on technical points of water–preserving coal mining technical specifications[J]. Coal Science and Technology,2020,48(9):81−87.
[96] 范立民,孙魁,李成,等. 西北大型煤炭基地地下水监测背景、思路及方法[J]. 煤炭学报,2020,45(1):317−329. FAN Limin,SUN Kui,LI Cheng,et al. Background,thought and method of groundwater monitoring in large coal base of Northwest China[J]. Journal of China Coal Society,2020,45(1):317−329.
[97] 彭捷,李成,向茂西,等. 榆神府区采动对潜水含水层的影响及其环境效应[J]. 煤炭科学技术,2018,46(2):156−162. PENG Jie,LI Cheng,XIANG Maoxi,et al. Influence of coal mining on phreatic aquifer and its environmental effects in Yulin–Shenmu–Fugu Area[J]. Coal Science and Technology,2018,46(2):156−162.
[98] 吴群英,彭捷,迟宝锁,等. 神南矿区煤炭绿色开采的水资源监测研究[J]. 煤炭科学技术,2021,49(1):304−311. WU Qunying,PENG Jie,CHI Baosuo,et al. Research on water resources monitoring of green coal mining in Shennan mining area[J]. Coal Science and Technology,2021,49(1):304−311.
[99] 缪协兴,孙亚军,浦海,等. 干旱半干旱矿区保水采煤方法与实践[M]. 徐州:中国矿业大学出版社,2011. [100] 李涛. 西部生态脆弱矿区煤–水协调开采技术与实践[M]. 徐州:中国矿业大学出版社,2020. [101] 马立强,金志远,张东升. 浅埋近距煤层保水开采机理与技术[M]. 北京:科学出版社,2019. [102] 张东升. 我国西北煤炭开采中的水资源保护基础理论研究[M]. 徐州:中国矿业大学出版社,2022. [103] 范立民,王亮,胡运兵,等. 保水采煤技术应用典型案例选编[M]. 北京:地质出版社,2024. [104] 邢朕国,杜文凤,梁喆,等. 煤矿地下水实时跟踪监测预警系统设计[J]. 工矿自动化,2017,43(8):72−75. XING Zhenguo,DU Wenfeng,LIANG Zhe,et al. Design of real–time tracking monitoring and early warning system for coal mine groundwater[J]. Industry and Mine Automation,2017,43(8):72−75.
[105] FAN Limin. Study on geological disaster from water inrush and sand bursting in mine of Shenfu Mining Distrct[C]//CCMRI. Groundwater hazard control and coalbed methane development and application techniques:Proceedings of the International Mining Tech’96 Symposium. Xi’an:1996.
[106] 范立民. 神府矿区矿井溃砂灾害防治技术研究[J]. 中国地质灾害与防治学报,1996,7(4):35−38. FAN Limin. Controlling technological study on suffusion hazard of coal shaft in Shenfu Mining Area[J]. The Chinese Journal of Geological Hazard and Control,1996,7(4):35−38.
[107] 武强,安永会,刘文岗,等. 神府东胜矿区水土环境问题及其调控技术[J]. 煤田地质与勘探,2005,33(3):54−57. WU Qiang,AN Yonghui,LIU Wengang,et al. Water–soil environment issues and its controlling technology in Shendong mining field[J]. Coal Geology & Exploration,2005,33(3):54−57.
[108] 范立民,杨宏科. 沙层对矿井污水的净化作用及矿井水的利用:以榆神府矿区萨拉乌苏组沙层为例[J]. 国土资源科技管理,2000,17(6):21−23. FAN Limin,YANG Hongke. Purification of sand layer in mine– shaft sewage and a new approach to utilization of mine–shaft sewage[J]. Scientific and Technological Management of Land and Resources,2000,17(6):21−23.
[109] 973计划(2013CB227900)“西部煤炭高强度开采下地质灾害防治与环境保护基础研究”项目组. 西部煤炭高强度开采下地质灾害防治理论与方法研究进展[J]. 煤炭学报,2017,42(2):267−275. Research Group of National Key Basic Research Program of China (2013CB227900) ( Basic Study on Geological Hazard Prevention and Environmental Protection in High Intensity Mining of Western Coal Area). Theory and method research of geological disaster prevention on high–intensity coal exploitation in the west areas[J]. Journal of China Coal Society,2017,42(2):267−275.
[110] 杨斌,杨天鸿,徐曾和,等. 中国西部矿区厚松散层的溃沙临界流速与水沙流动特征[J]. 东北大学学报 (自然科学版),2018,39(11):1648−1652. YANG Bin,YANG Tianhong,XU Zenghe,et al. Critical velocity of sand inrush and flow characteristics of water–sand in thick unconsolidated formations of mine in Western China[J]. Journal of Northeastern University(Natural Science),2018,39(11):1648−1652.
[111] 杨鑫,徐曾和,杨天鸿,等. 西部典型矿区风积沙含水层突水溃沙的起动条件与运移特征[J]. 岩土力学,2018,39(1):21−28. YANG Xin,XU Zenghe,YANG Tianhong,et al. Incipience condition and migration characteristics of aeolian–sand aquifer in a typical western mine[J]. Rock and Soil Mechanics,2018,39(1):21−28.
[112] 杨天鸿,师文豪,李顺才,等. 破碎岩体非线性渗流突水机理研究现状及发展趋势[J]. 煤炭学报,2016,41(7):1598−1609. YANG Tianhong,SHI Wenhao,LI Shuncai,et al. State of the art and trends of water–inrush mechanism of nonlinear flow in fractured rock mass[J]. Journal of China Coal Society,2016,41(7):1598−1609.
[113] 范立民,马雄德,李永红,等. 西部高强度采煤区矿山地质灾害现状与防控技术[J]. 煤炭学报,2017,42(2):276−285. FAN Limin,MA Xiongde,LI Yonghong,et al. Geological disasters and control technology in high intensity mining area of Western China[J]. Journal of China Coal Society,2017,42(2):276−285.
[114] 范立民,马雄德,蒋辉,等. 西部生态脆弱矿区矿井突水溃沙危险性分区[J]. 煤炭学报,2016,41(3):531−536. FAN Limin,MA Xiongde,JIANG Hui,et al. Risk evaluation on water and sand inrush in ecologically fragile coal mine[J]. Journal of China Coal Society,2016,41(3):531−536.
[115] 范立民,马雄德. 浅埋煤层矿井突水溃沙灾害研究进展[J]. 煤炭科学技术,2016,44(1):8−12. FAN Limin,MA Xiongde. Research progress of water inrush hazard in shallow buried coal seam mine[J]. Coal Science and Technology,2016,44(1):8−12.
[116] 仵拨云,彭捷,向茂西,等. 榆神府矿区保水采煤受保护萨拉乌苏组含水层研究[J]. 采矿与安全工程学报,2018,35(5):984−990. WU Boyun,PENG Jie,XIANG Maoxi,et al. Research on Salawusu Formation aquifer protected by water preserving mining in Yushenfu mining area[J]. Journal of Mining & Safety Engineering,2018,35(5):984−990.
[117] 范立民,迟宝锁,王宏科,等. 鄂尔多斯盆地北部直罗组含水层研究进展与水害防治建议[J]. 煤炭学报,2022,47(10):3535−3546. FAN Limin,CHI Baosuo,WANG Hongke,et al. Research progress of aquifer of Zhiluo Formation in northern Ordos Basin and suggestions on water hazard prevention[J]. Journal of China Coal Society,2022,47(10):3535−3546.
[118] 范立民,孙魁,马万超,等. 鄂尔多斯盆地北部直罗组古河道砂体分布区矿井涌水模式[J]. 煤炭学报,2024,49(2):917−928. FAN Limin,SUN Kui,MA Wanchao,et al. Mine water inflow pattern in the distribution area of paleochannel sand bodies of the Zhiluo Formation in the northern part of the Ordos Basin[J]. Journal of China Coal Society,2024,49(2):917−928.
[119] 孙魁,苗彦平,陈小绳,等. 鄂尔多斯盆地北部直罗组赋存特征及富水性[J]. 煤炭学报,2022,47(10):3572−3598. SUN Kui,MIAO Yanping,CHEN Xiaosheng,et al. Occurrence characteristics and water abundance of Zhiluo Formation in northern Ordos Basin[J]. Journal of China Coal Society,2022,47(10):3572−3598.
[120] 孙魁. 陕北侏罗纪煤田北部直罗组古河道复合砂体及其控水机制[D]. 西安:西安科技大学,2022. SUN Kui. Paleochannel sand bodies of Zhiluo Formation in northern Shaanxi Jurassic Coalfield and their water control mechanism[D]. Xi’an:Xi’an University of Science and Technology,2022.
[121] 焦养泉,王双明,范立民,等. 鄂尔多斯盆地侏罗纪含煤岩系地下水系统关键要素与格架模型[J]. 煤炭学报,2020,45(7):2411−2422. JIAO Yangquan,WANG Shuangming,FAN Limin,et al. Key elements and framework model of groundwater system in Jurassic coal measures of Ordos Basin[J]. Journal of China Coal Society,2020,45(7):2411−2422.
[122] 荣辉,焦养泉,高彬,等. 神府南区中侏罗统直罗组古河道冲刷带的空间定位预测[J]. 煤炭学报,2022,47(10):3561−3571. RONG Hui,Jiao Yangquan,GAo Bing,et al. Spatial location prediction of paleo-channel scouring zones of Middle Jurassic Zhiluo Formation in the southern Shenfu mining area[J]. Journal of China Coal Society,2022,47(10):3561−3571.
[123] 范立民,李涛,高颖,等. 生态脆弱煤矿区水体中微生物群落特征及矿井充水指示[J]. 煤炭科学技术,2024,52(1):255−266. DOI: 10.12438/cst.2023-1798 FAN Limin,LI Tao,GAO Ying,et al. Characteristics of microbial communities in water bodies of ecologically fragile coal mining areas and indications for mine water filling[J]. Coal Science and Technology,2024,52(1):255−266. DOI: 10.12438/cst.2023-1798
[124] 华照来,范立民,李增林,等. 论《煤矿防治水细则》中的“勘探清楚”问题[J]. 中国煤炭地质,2024,36(10):39−44. DOI: 10.3969/j.issn.1674-1803.2024.10.06 HUA Zhaolai,FAN Limin,LI Zenglin,et al. On the issue of “clear exploration”in the“detailed rules for coal mine water prevention and control”[J]. Coal Geology of China,2024,36(10):39−44. DOI: 10.3969/j.issn.1674-1803.2024.10.06
[125] 武强. 我国矿井水防控与资源化利用的研究进展、问题和展望[J]. 煤炭学报,2014,39(5):795−805. WU Qiang. Progress,problems and prospects of prevention and control technology of mine water and reutilization in China[J]. Journal of China Coal Society,2014,39(5):795−805.
[126] 武强,黄晓玲,董东林,等. 评价煤层顶板涌(突)水条件的“三图–双预测法”[J]. 煤炭学报,2000,25(1):60−65. DOI: 10.3321/j.issn:0253-9993.2000.01.014 WU Qiang,HUANG Xiaoling,DONG Donglin,et al. “Three maps–two predictions”method to evaluate water bursting conditions on roof coal[J]. Journal of China Coal Society,2000,25(1):60−65. DOI: 10.3321/j.issn:0253-9993.2000.01.014
[127] 孟召平,高延法,卢爱红. 矿井突水危险性评价理论与方法[M]. 北京:科学出版社,2011. [128] 尹尚先,王玉国,李文生. 矿井水灾害:原因·对策·出路[J]. 煤田地质与勘探,2023,51(1):214−221. DOI: 10.12363/issn.1001-1986.22.11.0862 YIN Shangxian,WANG Yuguo,LI Wensheng. Cause,countermeasures and solutions of water hazards in coal mines in China[J]. Coal Geology & Exploration,2023,51(1):214−221. DOI: 10.12363/issn.1001-1986.22.11.0862
[129] 董书宁. 对中国煤矿水害频发的几个关键科学问题的探讨[J]. 煤炭学报,2010,35(1):66−71. DONG Shuning. Some key scientific problems on water hazards frequently happened in China’s coal mines[J]. Journal of China Coal Society,2010,35(1):66−71.
[130] 董书宁,樊敏,郭小铭,等. 陕西省煤矿典型水灾隐患特征及治理技术[J]. 煤炭学报,2024,49(2):902−916. DONG Shuning,FAN Min,GUO Xiaoming,et al. Characteristics and prevention and control techniques of typical water hazards in coal mines in Shaanxi Province[J]. Journal of China Coal Society,2024,49(2):902−916.
[131] 董书宁,姬亚东,王皓,等. 鄂尔多斯盆地侏罗纪煤田典型顶板水害防控技术与应用[J]. 煤炭学报,2020,45(7):2367−2375. DONG Shuning,JI Yadong,WANG Hao,et al. Prevention and control technology and application of roof water disaster in Jurassic Coal Field of Ordos Basin[J]. Journal of China Coal Society,2020,45(7):2367−2375.
[132] 方刚,梁向阳,黄浩,等. 巴拉素井田煤层富水机理与注浆堵水技术[J]. 煤炭学报,2019,44(8):2470−2483. FANG Gang,LIANG Xiangyang,HUANG Hao,et al. Water–rich mechanism of coal seam and grouting and blocking water technology in Balasu mine field[J]. Journal of China Coal Society,2019,44(8):2470−2483.
[133] 黄选明,张雁,王明星,等. 我国露天煤矿截水帷幕关键技术进展[J]. 煤田地质与勘探,2022,50(7):1−9. HUANG Xuanming,ZHANG Yan,WANG Mingxing,et al. Key technical progress of water cutoff curtain technology in open–pit coal mines in China[J]. Coal Geology & Exploration,2022,50(7):1−9.
[134] 薛小渊,苗彦平,姬中奎,等. 烧变岩积水边界区回采工作面防治水技术研究[J]. 煤炭技术,2023,42(11):152−156. XUE Xiaoyuan,MIAO Yanping,JI Zhongkui,et al. Research on water control technology of mining face in burnt rock water accumulation boundary area[J]. Coal Technology,2023,42(11):152−156.
[135] 董书宁,杨志斌,姬中奎,等. 神府矿区大型水库旁烧变岩水保水开采技术研究[J]. 煤炭学报,2019,44(3):709−717. DONG Shuning,YANG Zhibin,JI Zhongkui,et al. Study on water–preserved mining technology of burnt rock aquifer beside the large reservoir in Shenfu Mining Area[J]. Journal of China Coal Society,2019,44(3):709−717.
[136] 王路,张东升,李强,等. 基于砂化层破碎带冲蚀–渗流耦合模型的多孔介质水–砂混合流运移规律研究[J/OL]. 矿业安全与环保,2024:1–10 [2024-07-08]. https://kns.cnki.net/kcms/detail/50.1062.TD.20240704.1511.003. html. WANG Lu,ZHANG Dongsheng,LI Qiang,et al. Study on migration law of water–sand mixed flow in porous medium based on erosion–seepage coupling in the fracture zone of sandy layer[J/OL]. Mining Safety & Environmental Protection,2024:1–10 [2024-07-08]. https://kns.cnki.net/kcms/detail/50.1062.TD.20240704.1511.003. html.
[137] 高彬,姬中奎,杨帆,等. 浅埋煤层过沟掘进巷道顶板淋水治理技术[J]. 煤矿安全,2020,51(9):94−97. GAO Bin,JI Zhongkui,YANG Fan,et al. Treatment technology of roof watering in ditch driving roadway of shallow coal seam[J]. Safety in Coal Mines,2020,51(9):94−97.
[138] 华照来,范立民,李增林,等. 古河道砂岩含水层水资源保护与水害防治方法[J]. 绿色矿山,2024,2(1):64−74. HUA Zhaolai,FAN Limin,LI Zenglin,et al. Methods for water resource protection and water hazard prevention in sandstone aquifers of ancient river channels[J]. Journal of Green Mine,2024,2(1):64−74.
[139] 曾一凡,于超,武强,等. 煤矿防治水“三区”划分方法及其水害防治意义[J]. 煤炭学报,2024,49(8):3605−3618. ZENG Yifan,YU Chao,WU Qiang,et al. “Three zones”method for coal mine water hazard control and its significance[J]. Journal of China Coal Society,2024,49(8):3605−3618.
[140] 王双明,孙强,胡鑫,等. 煤炭开采地质体复合损害与减损保障[J/OL]. 煤田地质与勘探,2025:1–10 [2025-01-15]. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=MDKT20250114001&;dbname=CJFD&dbcode=CJFQ. WANG Shuangming,SUN Qiang,HU Xin,et al. Coal mining–induced composite damage to geological bodies and geological guarantee against damage reduction[J/OL]. Coal Geology & Exploration,2025:1–10 [2025-01-15]. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=MDKT20250114001&;dbname=CJFD&dbcode=CJFQ.
[141] 王双明,孙强,耿济世,等. 西部矿区采动损害及减损开采的地质保障技术框架体系[J]. 煤田地质与勘探,2024,52(9):1−13. WANG Shuangming,SUN Qiang,GENG Jishi,et al. Geological support technology framework system for mining induced hazards and damage reduction mining of geological conditions in western mining area[J]. Coal Geology & Exploration,2024,52(9):1−13.
[142] 范立民,杨宏科. 神府矿区地面塌陷现状及成因研究[J]. 陕西煤炭技术,2000,19(1):7−9. [143] 侯恩科,谢晓深,冯栋,等. 浅埋煤层开采地面塌陷裂缝规律及防治方法[J]. 煤田地质与勘探,2022,50(12):30−40. HOU Enke,XIE Xiaoshen,FENG Dong,et al. Laws and prevention methods of ground cracks in shallow coal seam mining[J]. Coal Geology & Exploration,2022,50(12):30−40.
[144] 侯恩科,慕佳欣,谢晓深,等. 浅埋煤层开采地表裂缝发育规律及形成演化机理[J/OL]. 煤田地质与勘探,1-11[2025-02-24]. http://kns.cnki.net/kcms/detail/61.1155.P.20250122.1641.002.html. HOU Enke,MU Jiaxin,XIE Xaiocheng,et al. The development law and formation evolution mechanism of surface cracks in shallow coal seam mining[J/OL]. Coal Geology & Exploration,1-11[2025-02-24]. http://kns.cnki.net/kcms/detail/61.1155.P.20250122.1641.002.html.
[145] 彭苏萍,毕银丽. 钱鸣高院士指导西部干旱半干旱煤矿区生态修复研究[J]. 采矿与安全工程学报,2023,40(5):857−860. PENG Suping,BI Yinli. Academician Minggao Qian directed ecological restoration research of arid and semi–arid coal mining areas in Western China[J]. Journal of Mining & Safety Engineering,2023,40(5):857−860.
[146] 范立民,吴群英,彭捷,等. 黄河中游大型煤炭基地地质环境监测思路和方法[J]. 煤炭学报,2021,46(5):1417−1427. FAN Limin,WU Qunying,PENG Jie,et al. Thoughts and methods of geological environment monitoring for large coal bases in the middle reaches of the Yellow River[J]. Journal of China Coal Society,2021,46(5):1417−1427.
-
期刊类型引用(64)
1. 刘少伟,郭泽政,冯超,牛帅. 防隔水煤柱定向爆破应力转移机理及参数优化设计. 河南理工大学学报(自然科学版). 2025(01): 1-9 . 百度学术
2. 王占礼. 羊东矿8472工作面综合物探与区域治理验证. 煤炭与化工. 2025(01): 73-77+83 . 百度学术
3. 任志祥. 地面注浆防治水设备选型及工艺优化. 煤矿机械. 2025(03): 116-119 . 百度学术
4. 丁华忠,王力,景慎怀,黄寒静,陈洪岩,程合玉,李明强,曾庆辉,聂超. 松软煤层条带预抽底板梳状孔成孔及飞管完孔技术研究. 煤炭技术. 2025(03): 141-145 . 百度学术
5. 薛杨,李建林,郭水涛,徐博博. 基于定向钻探技术的深部矿井突水点封堵方案优化. 煤矿安全. 2024(01): 192-199 . 百度学术
6. 赵睿,刘磊. 瞬变电磁技术在注浆效果检测的试验研究. 煤矿机械. 2024(03): 31-33 . 百度学术
7. 钟蜜. 城郊煤矿薄层灰岩水害治理技术研究与实践. 山东煤炭科技. 2024(02): 126-131 . 百度学术
8. 桂和荣,李俊,陈永青,余浩,王浩,叶爽,陈大星,梁展,胡洋,郭艳,许继影. 基于主量元素地球化学的岩屑层位源解析. 煤炭学报. 2024(02): 929-940 . 百度学术
9. 董书宁,樊敏,郭小铭,刘英锋,郭康,姬中奎,李超峰,薛小渊. 陕西省煤矿典型水灾隐患特征及治理技术. 煤炭学报. 2024(02): 902-916 . 百度学术
10. 王琦. 煤层底板含水层注浆巷道跑浆风险及防范措施. 煤炭技术. 2024(07): 125-129 . 百度学术
11. 高保彬,任闯难,李兵兵,程磊,宋少鹏,齐治虎,徐影. 韧性视角下华北型煤田底板承压灰岩水原位保护技术研究. 河南理工大学学报(自然科学版). 2024(04): 12-20 . 百度学术
12. 李建林,薛杨,王心义,徐博博,郭水涛. 基于模糊综合评价的导水通道超前探查判识技术. 煤炭科学技术. 2024(07): 178-186 . 百度学术
13. 曾一凡,于超,武强,赵菱尔,尹尚先,张博成,刘泽洋,崔雅帅,阚雪冬,黄浩. 煤矿防治水“三区”划分方法及其水害防治意义. 煤炭学报. 2024(08): 3605-3618 . 百度学术
14. 纪伟,陈志坚,赵仲珩. 边坡地下水渗透压力数据时序分解方法研究. 中国煤炭地质. 2024(11): 32-39 . 百度学术
15. 闫鑫,丁湘,蒲治国,纪卓辰,李哲,刘凯祥,张寅. 基于AHP-CRITIC奥灰突水危险性评价的工作面水害分区防控. 中国矿业. 2024(12): 217-225 . 百度学术
16. 刘文武,刘杰,芮学来. 淮南张集矿东-1煤上采区多分支水平注浆井钻井技术. 矿产勘查. 2024(12): 2329-2336 . 百度学术
17. 唐道增,王永宝,陈建刚,陈军涛,云明,刘磊,郭洪运,傅子群. 黄河北煤田定向钻孔注浆效果的全周期评价方法. 煤炭技术. 2023(01): 151-156 . 百度学术
18. 武强,郭小铭,边凯,杜鑫,许珂,卜文扬,曾一凡. 开展水害致灾因素普查 防范煤矿水害事故发生. 中国煤炭. 2023(01): 3-15 . 百度学术
19. 董书宁,刘其声,王皓,郭小铭,柳昭星,郑士田,南生辉,刘建林,赵兆,石志远. 煤层底板水害超前区域治理理论框架与关键技术. 煤田地质与勘探. 2023(01): 185-195 . 本站查看
20. 樊鑫,赵晓光,唐胜利,解海军,程建远,王云宏,王盼. WSD-SVM在工作面底板破坏深度微震事件自动识别中的应用. 西安科技大学学报. 2023(01): 160-166 . 百度学术
21. 许峰. 阶梯式导水断层带探查及水害防治技术. 矿业安全与环保. 2023(01): 82-85+91 . 百度学术
22. 邢茂林. 煤层底板区域治理后断层突水原因及探讨. 煤矿安全. 2023(03): 204-211 . 百度学术
23. 魏廷双,许光泉,高宇航,党保全,孙贵,丁庆和,杨婷婷. 潘二矿奥陶系岩溶地下水数值模拟及疏放性分析. 地下水. 2023(02): 13-16 . 百度学术
24. 李晓龙. 整合矿井复采条件下老空水防治技术体系研究. 煤矿安全. 2023(04): 184-193 . 百度学术
25. 陈陆望,胡永胜,张杰,张苗,郑剑,郑忻,张媛媛,蔡欣悦,武明辉. 华北型煤田水文地球化学勘探关键技术研究进展. 煤田地质与勘探. 2023(02): 207-219 . 本站查看
26. 谢治刚,孙贵,随峰堂,许光泉,张海涛,卜军,詹润. 基于层次分析法的地面区域治理目的层位优化选择. 煤炭科学技术. 2023(03): 201-211 . 百度学术
27. 曹栋. 羊东矿8472工作面区域治理与分析. 煤炭与化工. 2023(04): 82-86 . 百度学术
28. 刘艺芳. 新型多泵高压注浆混合装置的设计及应用. 矿山机械. 2023(06): 46-49 . 百度学术
29. 马强,崔岩波. 定向长钻孔在煤矿工作面防治水中的应用. 价值工程. 2023(17): 124-126 . 百度学术
30. 李博,罗玉岚,樊娟,郭小铭,李梦华. 煤层底板突水多源信息综合评价系统设计开发与实现. 煤田地质与勘探. 2023(06): 1-12 . 本站查看
31. 尚慧. 晋城西北矿区底板隔水层采动影响模拟研究. 重庆科技学院学报(自然科学版). 2023(04): 13-20 . 百度学术
32. 董书宁,李智,郑士田,郭小铭,王宇航. 煤层底板导水通道钻孔超前探查与多元信息识别技术. 煤炭科学技术. 2023(07): 15-23 . 百度学术
33. 王震. 地面区域治理技术在隐伏断层超前探查中的应用. 中国煤炭地质. 2023(07): 47-50 . 百度学术
34. 吕红莉,童传霞,郝卫光. 带压开采煤层底板奥灰岩溶水害区域超前治理技术与应用. 煤炭技术. 2023(10): 163-166 . 百度学术
35. 毛怀勇,王正,刘凯祥,邹宏,贺晓浪,苏文,冯洁. 井下近水平定向钻进技术在煤矿奥灰水害防治中的应用. 中国煤炭地质. 2023(08): 38-44 . 百度学术
36. 薛小勇,南晶晶,胡晓亮,王兴明. 西卓煤矿首采工作面底板水害超前区域治理分析. 科学技术创新. 2023(24): 190-193 . 百度学术
37. 许光泉,鲍慧,刘星,贾娒,谢治刚,孙贵. 底板岩溶水害治理效果综合评价模型及应用. 安徽理工大学学报(自然科学版). 2023(05): 76-82 . 百度学术
38. 李杰,刘兆峰,唐佳伟,王霄. 矿井水处理技术研究进展. 中国煤炭. 2023(S2): 310-314 . 百度学术
39. 张智聪. 带压开采技术体系研究及应用. 内蒙古煤炭经济. 2023(21): 120-122 . 百度学术
40. 赵晨德,王心义,任君豪,郝建卿,孟建勇. 基于深度学习理论的煤层底板突水危险性预测. 地下空间与工程学报. 2023(06): 2090-2100 . 百度学术
41. 吴铁卫,高磊,程振雨. 山西介休青云煤矿底板奥灰水区域治理目的层位研究. 中国煤炭地质. 2023(12): 43-46 . 百度学术
42. 丁亚恒,李少华,陈卫. 地面定向顺层钻孔注浆改造技术在新桥煤矿水害治理中的应用. 能源与环保. 2023(12): 108-114+120 . 百度学术
43. 孙亚军,张莉,徐智敏,陈歌,赵先鸣,李鑫,高雅婷,张尚国,朱璐璐. 煤矿区矿井水水质形成与演化的多场作用机制及研究进展. 煤炭学报. 2022(01): 423-437 . 百度学术
44. 任君豪,王心义,王麒,王俊智,张波,郭水涛. 基于多方法的煤层底板突水危险性评价. 煤田地质与勘探. 2022(02): 89-97 . 本站查看
45. 高银贵,孔皖军,安士凯,薛贤明,郑刘根,常成林,姜春露,国伟,雷锋,王刚,杨成超. 唐家会矿奥灰水害区域治理试验工程及防控技术. 煤矿安全. 2022(03): 91-95+103 . 百度学术
46. 杨忠,李晓龙. 带压开采煤层底板破坏深度研究. 能源与环保. 2022(05): 306-310 . 百度学术
47. 李凯,李晓龙. 基于改进型突水系数法治理底板奥灰水害技术. 煤田地质与勘探. 2022(06): 125-131 . 本站查看
48. 丁同福,汪敏华,刘满才,朱昌淮,文东明,陈晓雷. 叠层多分支水平井精准建造陷落柱堵水塞技术. 煤炭科学技术. 2022(07): 244-251 . 百度学术
49. 张历峰. 采动影响下滨湖煤矿奥灰地下水流场数值模拟研究. 山东煤炭科技. 2022(08): 189-191+195+198 . 百度学术
50. 朱敬忠,刘启蒙,刘瑜,范佳俊,杨森. 断层活化特征及防隔水煤柱合理化留设研究. 煤炭科学技术. 2022(08): 166-171 . 百度学术
51. 姬中奎,疏义国,翟恩发,高银贵,程爱民,孔皖军,杨柳,罗安昆,薛小渊. 准格尔煤田奥灰水害区域超前治理技术研究. 煤炭技术. 2022(11): 109-112 . 百度学术
52. 贺炳伟. 煤矿奥灰水动态监测系统设计及应用. 陕西煤炭. 2022(06): 183-186+210 . 百度学术
53. 张培森,董宇航,张晓乐,许大强. 2008—2021年我国煤矿水害事故统计规律分析及预测研究. 煤炭工程. 2022(11): 131-137 . 百度学术
54. 虎维岳,赵春虎,吕汉江. 煤层底板水害区域注浆治理影响因素分析与高效布孔方式. 煤田地质与勘探. 2022(11): 134-143 . 本站查看
55. 于小鸽,吕华东,张德明,吕昌兴,曲林燕. 霄云井田奥陶系灰岩岩溶发育规律研究. 煤矿安全. 2022(12): 22-27 . 百度学术
56. 董书宁,刘再斌,程建远,陈宝辉,代振华,李丹. 煤炭智能开采地质保障技术及展望. 煤田地质与勘探. 2021(01): 21-31 . 本站查看
57. 王皓,董书宁,乔伟,姬亚东,朱开鹏,周振方,宁殿艳,尚宏波. 矿井水害防控远程服务云平台构建与应用. 煤田地质与勘探. 2021(01): 208-216 . 本站查看
58. 尹尚先,连会青,徐斌,田午子,曹敏,姚辉,孟浩鹏. 深部带压开采:传承与创新. 煤田地质与勘探. 2021(01): 170-181 . 本站查看
59. 高耀全,方刚,闫兴达. 邢东煤矿深部区域奥灰水害探查治理技术. 煤矿安全. 2021(05): 87-95 . 百度学术
60. 姜文浩. 联合注浆在工作面底板水害防治中的应用. 煤炭科技. 2021(04): 83-87 . 百度学术
61. 李晓龙. 煤矿井下水砂突涌钻孔封孔技术研发与应用. 煤田地质与勘探. 2021(04): 192-197 . 本站查看
62. 孟凡丁,许光泉,孙贵,谢治刚. 深埋条件下水平分支孔注浆模拟分析. 绿色科技. 2021(14): 194-198+213 . 百度学术
63. 郑士田,马荷雯,姬亚东. 煤层底板水害区域超前治理技术优化及其应用. 煤田地质与勘探. 2021(05): 167-173 . 本站查看
64. 董书宁. 煤矿安全高效生产地质保障的新技术新装备. 中国煤炭. 2020(09): 15-23 . 百度学术
其他类型引用(17)