煤层底板水害区域超前治理技术优化及其应用

郑士田, 马荷雯, 姬亚东

郑士田, 马荷雯, 姬亚东. 煤层底板水害区域超前治理技术优化及其应用[J]. 煤田地质与勘探, 2021, 49(5): 167-173. DOI: 10.3969/j.issn.1001-1986.2021.05.018
引用本文: 郑士田, 马荷雯, 姬亚东. 煤层底板水害区域超前治理技术优化及其应用[J]. 煤田地质与勘探, 2021, 49(5): 167-173. DOI: 10.3969/j.issn.1001-1986.2021.05.018
ZHENG Shitian, MA Hewen, JI Yadong. Optimization of regional advanced coal floor water hazard prevention and control technology and its application[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(5): 167-173. DOI: 10.3969/j.issn.1001-1986.2021.05.018
Citation: ZHENG Shitian, MA Hewen, JI Yadong. Optimization of regional advanced coal floor water hazard prevention and control technology and its application[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(5): 167-173. DOI: 10.3969/j.issn.1001-1986.2021.05.018

 

煤层底板水害区域超前治理技术优化及其应用

基金项目: 

国家重点研发计划项目 2017YFC0804100

详细信息
    作者简介:

    郑士田,1963年生,男,河南周口人,研究员,研究方向为矿井水害防治. E-mail:zhengshitian@cctegxian.com

    通讯作者:

    马荷雯,1990年生,女,陕西绥德人,博士,助理研究员,研究方向为水文地质工程地质. E-mail:mahewen@cumt.edu.cn

  • 中图分类号: TD745; TD265.4

Optimization of regional advanced coal floor water hazard prevention and control technology and its application

  • 摘要: 为了进一步提高煤层底板水害区域超前治理技术的治理效果,应优化注浆工艺,扩大技术的应用范围。总结淮北矿区区域底板超前治理工程实践表明,低压扩散和中压加固阶段压力控制对注浆总量起主要控制作用,进而直接影响灰岩含水层改造效果,推导的不同岩溶裂隙发育程度地层的注浆量预计公式,可以有效指导注浆工程设计。此外,提出了工作面区域内、外双(钻)孔组的水平布设方法,优化注浆工艺的同时,提高了钻孔利用率。针对注浆工程中注浆压力控制及浆液选取等关键技术问题,建立了研究区裂隙发育程度的多源信息判识方法和“微压充填—低压扩散—中压加固—高压劈裂”的“阶段型”注浆压力控制模型,细分了不同注浆阶段的注浆浆液类型,推导了注浆压力的分级阈值和设计公式,实现了注浆压力的分区段高效、精准控制,对煤矿底板水害超前区域治理技术的应用与推广具有重要意义。
    Abstract: In order to optimize the grouting process, improve the effect of the technology, and promote its application, this paper presents an investigation on the application of the regional advanced coal floor water hazard prevention and control technology in Huaibei mining area. The investigation shows that the pressure control in low pressure diffusion and medium pressure strengthening stages plays a major role in controlling the total grouting volume, which directly affects the limestone aquifer reformation. The prediction formula for grouting volume for strata with different karst fractures can provide guidance to the grouting engineering design. In addition, the horizontal layout method of double drill hole group inside and outside the working face is put forward to optimize the grouting technology and improve the utilization rate of drilling holes. To address the key technical issues of grouting pressure control and grout selection, the multi-source information identification method of fracture development and the stage-grouting pressure control model are established, in which the slurry types for different grouting stages are divided, and the classification threshold and design formula of grouting pressure are proposed, making the grouting pressure control efficiently and accurately. It is of great significance for the application and promotion of the regional advanced coal floor water hazard prevention and control technology.
  • 图  1   Ⅲ632工作面煤层底板地层结构

    Fig.  1   Stratigraphic structure of coal floor if working face Ⅲ632

    图  2   煤层底板薄层灰岩注浆工程设计

    Fig.  2   Design of grout injection into thin limestone in coal floor

    图  3   朱庄煤矿Ⅲ632工作面钻孔位置

    Fig.  3   Layout of borehole location in working faceⅢ632 in Zhuzhuang Coal Mine

    图  4   阶段型注浆压力下注浆量控制曲线

    Fig.  4   Duration curve of grouting volume control on grouting pressure stages

    图  5   裂隙发育不同程度下注浆量变化关系曲线

    Fig.  5   Variation of grouting volume at different levels of fracture development

    表  1   不同注浆阶段浆液类型

    Table  1   Grout types in different grouting pressure stages

    注浆阶段 浆液类型 浆液比重 可注性
    微压充填 粉煤灰–水泥混浆 1.3~1.5 极强
    低压扩散 粉煤灰–水泥混浆 1.3~1.5 较强
    中压加固 粉煤灰–水泥混浆 1.5~1.6 一般
    高压劈裂 水泥纯浆 1.6
    下载: 导出CSV
  • [1] 彭苏萍. 深部煤炭资源赋存规律与开发地质评价研究现状及今后发展趋势[J]. 煤, 2008, 17(2): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-MEIA200802003.htm

    PENG Suping. Present study and development trend of the deepen coal resource distribution and mining geologic evaluation[J]. Coal, 2008, 17(2): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-MEIA200802003.htm

    [2] 张党育. 深部开采矿井水害区域治理关键技术研究及发展[J]. 煤炭科学技术, 2017, 45(8): 8-12. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201708002.htm

    ZHANG Dangyu. Research and development on key technology of mine water disaster regional control in deep mine[J]. Coal Science and Technology, 2017, 45(8): 8-12. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201708002.htm

    [3] 蓝航, 陈东科, 毛德兵. 我国煤矿深部开采现状及灾害防治分析[J]. 煤炭科学技术, 2016, 44(1): 39-46. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201601007.htm

    LAN Hang, CHEN Dongke, MAO Debing. Current status of deep mining and disaster prevention in China[J]. Coal Science and Technology, 2016, 44(1): 39-46. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201601007.htm

    [4] 张党育, 蒋勤明, 高春芳, 等. 华北型煤田底板岩溶水害区域治理关键技术研究进展[J]. 煤炭科学技术, 2020, 48(6): 31-36. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ202006002.htm

    ZHANG Dangyu, JIANG Qinming, GAO Chunfang, et al. Study progress on key technologies for regional treatment of Karst water damage control in the floor of North China Coalfield[J]. Coal Science and Technology, 2020, 48(6): 31-36. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ202006002.htm

    [5] 赵庆彪. 高承压水上煤层安全开采指导原则及技术对策[J]. 煤炭科学技术, 2013, 41(9): 82-86. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201309018.htm

    ZHAO Qingbiao. Technical countermeasures and guidance principles of seam safety mining above high pressurized water aquifer[J]. Coal Science and Technology, 2013, 41(9): 82-86. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201309018.htm

    [6] 李晓龙, 张红强, 郝世俊, 等. 煤层底板奥灰水害防治定向钻孔施工关键技术[J]. 煤炭科学技术, 2019, 47(5): 64-70. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201905010.htm

    LI Xiaolong, ZHANG Hongqiang, HAO Shijun, et al. Key techniques for directional drilling & construction for control of coal floor Ordovician limestone karst water disaster[J]. Coal Science and Technology, 2019, 47(5): 64-70. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201905010.htm

    [7] 王道坤, 崔亚利, 易德礼. 地面定向钻探技术在煤层底板高承压含水层改造中的应用[J]. 煤田地质与勘探, 2019, 47(增刊1): 32-36. http://mdkt.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=88cb2e92-3368-415b-a62d-87adbcab0199

    WANG Daokun, CUI Yali, YI Deli. Application of surface directional drilling technology in reforming the confined aquifer with high pressure in coal seam floor[J]. Coal Geology & Exploration, 2019, 47(Sup. 1): 32-36. http://mdkt.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=88cb2e92-3368-415b-a62d-87adbcab0199

    [8] 赵庆彪. 奥灰岩溶水害区域超前治理技术研究及应用[J]. 煤炭学报, 2014, 39(6): 1112-1117. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201406020.htm

    ZHAO Qingbiao. Ordovician limestone karst water disaster regional advanced governance technology study and application[J]. Journal of China Coal Society, 2014, 39(6): 1112-1117. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201406020.htm

    [9] 蒋向明, 任虎俊, 陈亚洲. 区域超前探查治理技术在邯邢矿区深部采煤底板水害防治中的应用[J]. 煤炭工程, 2020, 52(3): 66-71. https://www.cnki.com.cn/Article/CJFDTOTAL-MKSJ202003014.htm

    JIANG Xiangming, REN Junhu, CHEN Yazhou. Application of advance exploration and control technology in deep mining of Hanxing Mining Area[J]. Coal Engineering, 2020, 52(3): 66-71. https://www.cnki.com.cn/Article/CJFDTOTAL-MKSJ202003014.htm

    [10] 尹尚先, 王屹, 尹慧超, 等. 深部底板奥灰薄灰突水机理及全时空防治技术[J]. 煤炭学报, 2020, 45(5): 1855-1864. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202005031.htm

    YIN Shangxian, WANG Yi, YIN Huichao, et al. Mechanism and full-time-space prevention and control technology of water inrush from Ordovician and thin limestone in deep mines[J]. Journal of China Coal Society, 2020, 45(5): 1855-1864. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202005031.htm

    [11] 赵庆彪. 带压开采防治水技术保障体系建设[J]. 中国煤炭, 2010, 36(1): 98-100. DOI: 10.3969/j.issn.1006-530X.2010.01.030

    ZHAO Qingbiao. Construction of technical guarantee system for water prevention and control in coal mining under safe water pressure of aquifer[J]. China Coal, 2010, 36(1): 98-100. DOI: 10.3969/j.issn.1006-530X.2010.01.030

    [12] 董书宁, 郭小铭, 刘其声, 等. 华北型煤田底板灰岩含水层超前区域治理模式与选择准则[J]. 煤田地质与勘探, 2020, 48(4): 1-10. DOI: 10.3969/j.issn.1001-1986.2020.04.001

    DONG Shuning, GUO Xiaoming, LIU Qisheng, et al. Model and selection criterion of zonal preact grouting to prevent mine water disasters of coal floor limestone aquifer in North China type coalfield[J]. Coal Geology & Exploration, 2020, 48(4): 1-10. DOI: 10.3969/j.issn.1001-1986.2020.04.001

    [13] 郑士田. 两淮煤田煤层底板灰岩水害区域超前探查治理技术[J]. 煤田地质与勘探, 2018, 46(4): 142-146. http://mdkt.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=9a7167a5-12dd-49e3-8024-ca0358d296b1

    ZHENG Shitian. Advanced exploration and control technology of limestone water hazard in coal seam floor in Huainan and Huaibei coalfields[J]. Coal Geology & Exploration, 2018, 46(4): 142-146. http://mdkt.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=9a7167a5-12dd-49e3-8024-ca0358d296b1

    [14] 安许良. 大水垂比地面定向水平孔煤层底板注浆防治水技术[J]. 煤炭科学技术, 2018, 46(11): 126-132. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201811020.htm

    AN Xuliang. Water prevention and control technology for coal seam floor grouting with high horizontal-vertical ratio ground oriented horizontal hole[J]. Coal Science and Technology, 2018, 46(11): 126-132. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201811020.htm

    [15] 郑士田. 地面定向钻进技术在煤矿陷落柱突水防治中的应用[J]. 煤炭科学技术, 2018, 46(7): 229-233. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201807036.htm

    ZHENG Shitian. Application of ground directional borehole technology to control prevention karst collapsed column water inrush in coal mines[J]. Coal Science and Technology, 2018, 46(7): 229-233. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201807036.htm

    [16] 南生辉. 邯邢矿区奥陶系灰岩上部注浆改造技术[J]. 煤田地质与勘探, 2010, 38(3): 37-40. http://mdkt.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=6c176299-6317-4940-8371-825883e4906e

    NAN Shenghui. Technical feasibility of grouting reform for upper part of Ordovician limestone in Xingtai and Handan coal mining areas[J]. Coal Geology & Exploration, 2010, 38(3): 37-40. http://mdkt.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=6c176299-6317-4940-8371-825883e4906e

    [17] 郑士田. 地面顺层孔探注成套技术在底板高压岩溶水害治理中的应用[J]. 中国煤炭地质, 2018, 30(8): 53-57. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMT201808011.htm

    ZHENG Shitian. Application of complete set of surface bedding borehole exploration and grouting technology on floor high pressure karst water hazard governance[J]. Coal Geology of China, 2018, 30(8): 53-57. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMT201808011.htm

    [18] 赵庆彪, 高春芳, 王铁记. 区域超前治理防治水技术[J]. 煤矿开采, 2015, 20(2): 90-94. https://www.cnki.com.cn/Article/CJFDTOTAL-MKKC201502027.htm

    ZHAO Qingbiao, GAO Chunfang, WANG Tieji. Technology of regional advanced water prevention and control[J]. Coal Mining Technology, 2015, 20(2): 90-94. https://www.cnki.com.cn/Article/CJFDTOTAL-MKKC201502027.htm

    [19] 国家能源局. 水电工程钻孔压水试验规程: NB/T 35113- 2018[S]. 北京: 中国水利水电出版社, 2018.

    National Energy Administration. Regulations for borehole pressure water test of hydropower engineering: NB/T 35113-2018[S]. Beijing: China Water & Power Press, 2018.

    [20] 李涛, 高颖, 艾德春, 等. 基于承压水单孔放水实验的底板水害精准注浆防治[J]. 煤炭学报, 2019, 44(8): 2494-2501. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201908024.htm

    LI Tao, GAO Ying, AI Dechun, et al. Floor precise grouting of prevention and control of water based on confined water single-hole drainage experiment[J]. Journal of China Coal Society, 2019, 44(8): 2494-2501. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201908024.htm

    [21] 张永成. 注浆技术[M]. 北京: 煤炭工业出版社, 2012: 92-96.

    ZHANG Yongcheng. Cementation technology[M]. Beijing: China Coal Industry Publishing House, 2012: 92-96.

    [22] 丁庆军, 管学茂, 胡曙光. 混合材对超细灌浆水泥流变性能的影响[J]. 长江科学院院报, 2002, 19(2): 23-26. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB200202005.htm

    DING Qingjun, GUAN Xuemao, HU Shuguang. Effect of admixtures on rheological properties of microfine grouting cement[J]. Journal of Yangtze River Scientific Research Institute, 2002, 19(2): 23-26. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB200202005.htm

图(5)  /  表(1)
计量
  • 文章访问数:  349
  • HTML全文浏览量:  31
  • PDF下载量:  107
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-05
  • 修回日期:  2021-07-05
  • 网络出版日期:  2021-11-05
  • 发布日期:  2021-10-24

目录

    /

    返回文章
    返回