Risk assessment of water inrush from coal seam floors based on multiple methods
-
摘要: 选择平顶山煤田二矿、十矿和十二矿51个钻孔的隔水层厚度、断层复杂程度、含水层水压、含水层单位涌水量、采高5个因素为评价因子,以层次分析法和灰色关联分析法计算的常权权重为基础,应用变权理论确定各指标因子的变权权重;分别利用物元可拓法、模糊可变集理论、突变理论、模糊综合评价法,对煤层底板突水危险性进行评价并确定突水危险性等级。与实际开采情况的对比分析证明,模糊可变集理论是最适宜研究区的底板突水危险性评价方法,评价结果与开采实际较为吻合。模糊可变集理论的评价表明,二矿、十矿、十二矿带压区内安全区占比分别为4.08%、14.30%、0,低威胁区占比分别为76.91%、83.14%、85.78%,高威胁区占比分别为19.01%、2.56%、14.22%,研究区内暂无危险区。Abstract: Five factors including the thickness of the aquifer, the complexity of the fault, the water pressure of the aquifer, the unit water inflow of the aquifer, and mining height of 51 boreholes in No.2, No.10 and No.12 Coal Mines of Pingdingshan Coalfield are selected as the index factors. On the basis of the constant weight calculated by the analytic hierarchy process and grey relational analysis, the variable weights of each index factor are determined by applying the variable weight theory. By using the matter-element extension method, fuzzy variable set theory, catastrophe theory, and fuzzy comprehensive evaluation method, the water inrush risk of coal seam floors is evaluated and the water inrush risk grade is determined. The comparative analysis of the actual mining situation shows that the fuzzy variable set theory is the most suitable method for risk evaluation of floor water inrush in the study area, and its evaluation results are more consistent with the actual situation. The evaluation based on the fuzzy variable set theory shows that the proportions of safety zones in the pressure zones of No.2, No.10 and No.12 Coal Mine are 4.08%, 14.30% and 0 respectively; the proportions of low threat zones are 76.91%, 83.14% and 85.78% respectively; and the proportions of high threat zones are 19.01%, 2.56% and 14.22% respectively. There is no danger zones in the study area temporarily.
-
-
表 1 指标因子赋值结果
Table 1 Quantitative results of index factors
钻孔
编号水压/
MPa单位涌水量/
(L·s–1·m–1)采高/m 隔水层厚度/
m断层分维值 钻孔
编号水压/
MPa单位涌水量/
(L·s–1·m–1)采高/m 隔水层厚度/
m断层分维值 2-1 0.5264 0.1823 1.7857 15.7078 0.8873 10-14 0.5043 0.0260 3.2647 81.542 0 0.7971 2-2 0.5498 0.5179 1.1823 13.6815 0.8451 10-15 0.5423 0.0282 3.1189 82.1374 0.9044 2-3 0.5951 1.0808 0.8679 17.7004 0.8109 10-16 0.5993 0.0302 3.0602 82.4651 0.9421 2-4 0.5422 0.9490 1.3912 26.4058 0.8187 10-17 2.7756 0.0598 3.6500 80.4300 0.7061 2-5 0.4305 0.1383 1.8936 17.3044 0.8994 10-18 2.8397 0.0422 5.9700 90.8400 0.7189 2-6 0.4690 0.5098 1.0765 14.4888 0.8094 10-19 2.3782 0.0423 6.0500 80.7900 0.7263 2-7 0.4893 0.8019 0.5544 15.2181 0.7758 10-20 2.0213 0.0500 6.8500 80.4600 0.6412 2-8 0.4766 0.8624 1.2257 26.6466 0.7710 均值 1.2589 0.0373 3.4389 81.6309 0.7712 2-9 0.6630 0.8510 2.0224 21.4843 1.0173 12-1 2.4407 0.2270 3.8264 96.5309 1.3096 2-10 0.5544 0.6932 0.4939 47.7589 1.0935 12-2 2.2979 0.2171 3.8397 96.1909 1.4242 2-11 0.5196 0.5300 1.3141 24.6479 1.0710 12-3 2.1736 0.2102 3.8456 95.9022 1.4172 2-12 0.5008 0.4043 1.2788 27.4785 1.2944 12-4 2.0924 0.2070 3.8452 95.7255 1.3979 2-13 0.4200 0.2901 0.4778 44.9826 0.9643 12-5 1.9033 0.1772 3.886 0 95.4657 1.3484 均值 0.5182 0.6008 1.1973 24.1158 0.9275 12-6 1.9769 0.1762 3.8932 95.6592 1.3415 10-1 1.4983 0.0445 3.7437 80.4339 0.6467 12-7 2.0958 0.1744 3.8988 96.0221 1.2593 10-2 1.4933 0.0424 2.8745 80.7430 0.8418 12-8 2.2692 0.1695 3.8883 96.6785 1.0193 10-3 1.4670 0.0405 2.1031 81.3042 0.8663 12-9 2.3353 0.1607 4.2111 85.0839 0.9195 10-4 1.3477 0.0398 1.8075 81.3466 0.8758 12-10 2.2600 0.1721 4.3811 85.2341 1.0433 10-5 1.2036 0.0387 1.4863 81.3504 0.8690 12-11 2.2195 0.1715 4.4278 85.2874 1.0911 10-6 1.1725 0.0396 1.8767 80.8842 0.9033 12-12 1.9786 0.1560 4.3077 85.5304 1.2130 10-7 1.1372 0.0414 2.6234 80.4273 0.7367 12-13 1.7789 0.1271 3.9184 85.8249 1.1442 10-8 1.1241 0.0436 3.2502 80.2976 0.4695 12-14 1.8601 0.1044 3.7705 85.6541 0.9105 10-9 0.6766 0.0309 3.1735 82.2445 0.9084 12-15 1.8642 0.0198 3.3054 85.2398 0.7989 10-10 0.6599 0.0294 3.2959 81.9122 0.8618 12-16 2.9500 0.3318 5.7449 84.9238 0.9477 10-11 0.6327 0.0262 3.5113 81.2258 0.7215 12-17 2.7900 0.3176 4.6595 84.6951 0.8017 10-12 0.6269 0.0248 3.6117 80.8190 0.6152 12-18 2.2300 0.0297 3.7427 84.3192 0.7926 10-13 0.4779 0.0247 3.4556 80.9642 0.6712 均值 2.1954 0.1750 4.0774 89.9982 1.1211 表 2 各指标对应的变权区间
Table 2 Variable weight intervals of each index
评价因子 惩罚区间 不激励不惩罚区间 初激励区间 强激励区间 水压 0≤x<0.1899 0.1899≤x<0.4817 0.4817≤x<0.8649 0.8649≤x≤1 单位涌水量 0≤x<0.2250 0.2250≤x<0.5578 0.5578≤x<0.8350 0.8350≤x≤1 采高 0≤x<0.1508 0.1508≤x<0.3564 0.3564≤x<0.7414 0.7414≤x≤1 隔水层厚度 0≤x<0.0157 0.0157≤x<0.1012 0.1012≤x<0.3023 0.3023≤x≤1 断层分维值 0≤x<0.2978 0.2978≤x<0.4832 0.4832≤x<0.7427 0.7427≤x≤1 表 3 不同参数条件下的计算结果
Table 3 Calculation results under different parameter conditions
参数 k=1, p=1 k=2, p=1 k=1, p=2 k=2, p=2 $\bar H$ 级别特征值 2.031 3 1.972 3 2.112 7 2.049 8 2.046 4 表 4 突水危险性评价指标及结果
Table 4 Water inrush risk assessment indexes and results
评价方法 不同指标评价结果 水压 单位涌
水量采高 隔水层
厚度断层复
杂程度初始隶属函数 0.342 8 0.104 7 0.765 0 0.209 2 1 初始突变级数 0.585 5 0.471 3 0.874 6 0.593 6 1 中间变量指标值 0.528 4 0.734 1 1 中间突变级数值 0.726 9 0.902 1 1 总突变隶属函数值 0.876 3 表 5 不同方法的底板突水危险性评价结果
Table 5 Risk assessment results by different methods
钻孔编号 物元
可拓法模糊
可变集突变
理论模糊
综合评判钻孔编号 物元
可拓法模糊
可变集突变
理论模糊
综合评判2-1 Ⅱ Ⅱ Ⅰ Ⅰ 10-14 Ⅱ Ⅱ Ⅰ Ⅰ 2-2 Ⅲ Ⅲ Ⅱ Ⅰ 10-15 Ⅱ Ⅱ Ⅲ Ⅱ 2-3 Ⅲ Ⅲ Ⅲ Ⅲ 10-16 Ⅱ Ⅱ Ⅲ Ⅱ 2-4 Ⅱ Ⅱ Ⅱ Ⅰ 10-17 Ⅰ Ⅱ Ⅲ Ⅲ 2-5 Ⅱ Ⅱ Ⅰ Ⅱ 10-18 Ⅰ Ⅱ Ⅱ Ⅰ 2-6 Ⅱ Ⅱ Ⅱ Ⅰ 10-19 Ⅰ Ⅱ Ⅱ Ⅳ 2-7 Ⅲ Ⅲ Ⅲ Ⅰ 10-20 Ⅰ Ⅱ Ⅲ Ⅲ 2-8 Ⅱ Ⅱ Ⅰ Ⅰ 12-1 Ⅲ Ⅲ Ⅱ Ⅲ 2-9 Ⅱ Ⅱ Ⅱ Ⅰ 12-2 Ⅲ Ⅲ Ⅱ Ⅲ 2-10 Ⅰ Ⅱ Ⅲ Ⅰ 12-3 Ⅱ Ⅲ Ⅱ Ⅱ 2-11 Ⅱ Ⅱ Ⅱ Ⅰ 12-4 Ⅱ Ⅱ Ⅰ Ⅲ 2-12 Ⅱ Ⅱ Ⅲ Ⅱ 12-5 Ⅱ Ⅱ Ⅰ Ⅲ 2-13 Ⅰ Ⅰ Ⅱ Ⅰ 12-6 Ⅱ Ⅱ Ⅰ Ⅲ 10-1 Ⅰ Ⅱ Ⅱ Ⅰ 12-7 Ⅱ Ⅱ Ⅰ Ⅲ 10-2 Ⅲ Ⅲ Ⅱ Ⅳ 12-8 Ⅱ Ⅱ Ⅰ Ⅳ 10-3 Ⅲ Ⅲ Ⅱ Ⅳ 12-9 Ⅱ Ⅱ Ⅰ Ⅲ 10-4 Ⅲ Ⅲ Ⅱ Ⅳ 12-10 Ⅱ Ⅱ Ⅰ Ⅲ 10-5 Ⅲ Ⅱ Ⅱ Ⅱ 12-11 Ⅱ Ⅲ Ⅰ Ⅲ 10-6 Ⅱ Ⅲ Ⅲ Ⅱ 12-12 Ⅱ Ⅱ Ⅰ Ⅲ 10-7 Ⅱ Ⅱ Ⅱ Ⅱ 12-13 Ⅱ Ⅱ Ⅰ Ⅲ 10-8 Ⅰ Ⅱ Ⅱ Ⅱ 12-14 Ⅰ Ⅱ Ⅰ Ⅲ 10-9 Ⅱ Ⅱ Ⅲ Ⅱ 12-15 Ⅰ Ⅱ Ⅰ Ⅰ 10-10 Ⅱ Ⅱ Ⅱ Ⅱ 12-16 Ⅰ Ⅲ Ⅲ Ⅲ 10-11 Ⅰ Ⅱ Ⅰ Ⅲ 12-17 Ⅰ Ⅱ Ⅱ Ⅲ 10-12 Ⅰ Ⅱ Ⅰ Ⅱ 12-18 Ⅰ Ⅱ Ⅱ Ⅲ 10-13 Ⅰ Ⅱ Ⅰ Ⅰ 表 6 二矿有效隔水层厚度
Table 6 Effective aquiclude thickness of No.2 Coal Mine
钻孔编号 隔水层厚度/m 有效隔水层厚度/m 钻孔编号 隔水层厚度/m 有效隔水层厚度/m 2-1 15.707 8 −4.412 2 2-8 26.646 6 6.526 6 2-2 13.681 5 −6.438 5 2-9 21.484 3 1.364 3 2-3 17.700 4 −2.419 6 2-10 47.758 9 27.638 9 2-4 26.405 8 6.285 8 2-11 24.647 9 4.527 9 2-5 17.304 4 −2.815 6 2-12 27.478 5 7.358 5 2-6 14.488 8 −5.631 2 2-13 44.982 6 24.862 6 2-7 15.218 1 −4.901 9 均值 24.12 3.99 表 7 分区面积及其所占带压区比例
Table 7 Zoning areas and the proportions in the pressure zones
矿井名称 带压区域面积/km2 安全区 低威胁区 高威胁区 面积/km2 占比/% 面积/km2 占比/% 面积/km2 占比/% 二矿 14.20 0.58 4.08 10.92 76.91 2.70 19.01 十矿 53.35 7.63 14.30 44.23 83.14 1.49 2.56 十二矿 27.81 0 0 23.86 85.78 3.95 14.22 -
[1] 王纪军. 孙疃煤矿短壁块段式开采底板破坏规律及突水危险性评价研究[D]. 北京: 中国矿业大学(北京), 2019. WANG Jijun. Study on failure law and risk of water inrush in shortwall block mining in Suntuan coal mine[D]. Beijing: China University of Mining and Technology(Beijing), 2019.
[2] 贾建称,巩泽文,靳德武,等. 煤炭地质学“十三五”主要进展及展望[J]. 煤田地质与勘探,2021,49(1):32−44. DOI: 10.3969/j.issn.1001-1986.2021.01.004 JIA Jiancheng,GONG Zewen,JIN Dewu,et al. The main progress in the 13th five−year plan and the prospect of coal geology[J]. Coal Geology & Exploration,2021,49(1):32−44. DOI: 10.3969/j.issn.1001-1986.2021.01.004
[3] 董书宁,郭小铭,刘其声,等. 华北型煤田底板灰岩含水层超前区域治理模式与选择准则[J]. 煤田地质与勘探,2020,48(4):1−10. DOI: 10.3969/j.issn.1001-1986.2020.04.001 DONG Shuning,GUO Xiaoming,LIU Qisheng,et al. Model and selection criterion of zonal preact grouting to prevent mine water disasters of coal floor limestone aquifer in North China type coalfield[J]. Coal Geology & Exploration,2020,48(4):1−10. DOI: 10.3969/j.issn.1001-1986.2020.04.001
[4] 国家煤矿安全监察局. 《煤矿防治水细则》[M]. 北京: 煤炭工业出版社, 2018. [5] LI Q,MENG X X,LIU Y B,et al. Risk assessment of floor water inrush using entropy weight and variation coefficient model[J]. Geotechnical and Geological Engineering,2019,37(3):1493−1501. DOI: 10.1007/s10706-018-0702-9
[6] 陈建平,王春雷,王雪冬. 基于CNN神经网络的煤层底板突水预测[J]. 中国地质灾害与防治学报,2021,32(1):50−57. CHEN Jianping,WANG Chunlei,WANG Xuedong. Coal mine floor water inrush prediction based on CNN neural network[J]. The Chinese Journal of Geological Hazard and Control,2021,32(1):50−57.
[7] WANG Xinyi,YANG Guang,WANG Qi,et al. Research on water–filled source identification technology of coal seam floor based on multiple index factors[J]. Geofluids,2019(9):1−9.
[8] QIU Mei,SHI Longqing,TENG Chao,et al. Assessment of water inrush risk using the fuzzy Delphi analytic hierarchy process and grey relational analysis in the Liangzhuang Coal Mine,China[J]. Mine Water and the Environment,2017,36(1):39−50. DOI: 10.1007/s10230-016-0391-7
[9] 刘守强,武强,李哲,等. 多煤层底板单一含水层矿区突水变权脆弱性评价与应用[J]. 中国矿业大学学报,2021,50(3):587−597. LIU Shouqiang,WU Qiang,LI Zhe,et al. Vulnerability evaluation and application of floor water inrush in mining area with multiple coal seams and single aquifer based on variable weight[J]. Journal of China University of Mining & Technology,2021,50(3):587−597.
[10] 施龙青,张荣遨,韩进,等. 基于熵权法−层次分析法耦合赋权的多源信息融合突水危险性评价[J]. 河南理工大学学报(自然科学版),2020,39(3):17−25. SHI Longqing,ZHANG Rong’ao,HAN Jin,et al. Water inrush risk assessment with multi-source information type fusion based on EWM-AHP comprehensive weighting[J]. Journal of Henan Polytechnic University(Natural Science),2020,39(3):17−25.
[11] ZENG Yifan,LIU Yuanzhang,WU Haixia. Assessment of floor water inrush with vulnerability index method:application in Malan coal mine of Shanxi Province,China[J]. Quarterly Journal of Engineering Geology and Hydrogeology,2017,50(2):169−178. DOI: 10.1144/qjegh2016-105
[12] WANG Xintong,LI Shucai,XU Zhenhao,et al. Analysis of factors influencing floor water inrush in coal mines:A nonlinear fuzzy interval assessment method[J]. Mine Water and the Environment,2019,38(1):81−92. DOI: 10.1007/s10230-018-00578-x
[13] HU Yanbo,LI Wenping,WANG Qiqing,et al. Evaluation of water inrush risk from coal seam floors with an AHP−EWM algorithm and GIS[J]. Environmental Earth Sciences,2019,78(10):1−15.
[14] 靳德武,赵春虎,段建华,等. 煤层底板水害三维监测与智能预警系统研究[J]. 煤炭学报,2020,45(6):2256−2264. JIN Dewu,ZHAO Chunhu,DUAN Jianhua,et al. Research on 3D monitoring and intelligent early warning system for water hazard of coal seam floor[J]. Journal of China Coal Society,2020,45(6):2256−2264.
[15] YU H T,ZHU S Y,CHEN Y. Comparative analysis of water inrush from the deep coal floor by mining above the confined aquifer[J]. Journal of Mining Science,2019,55(3):407−413. DOI: 10.1134/S1062739119035733
[16] YANG Binbin,YUAN Junhong,DUAN Lihong,et al. Using GIS and fractal theory to evaluate degree of fault complexity and water yield[J]. Mine Water and the Environment,2019,38(2):261−267. DOI: 10.1007/s10230-018-0563-8
[17] RUAN Z,LI Cuiping,WU Aixiang,et al. A new risk assessment model for underground mine water inrush based on AHP and D−S evidence theory[J]. Mine Water and the Environment,2019,38(3):488−496. DOI: 10.1007/s10230-018-00575-0
[18] DING H,WU Q,ZHAO D,et al. Risk assessment of karst collapse using an integrated fuzzy analytic hierarchy process and grey relational analysis model[J]. Geomechanics and Engineering,2019,18(5):515−525.
[19] WANG Qiang,LI Siqi,HE Gang,et al. Evaluating sustainability of water−energy−food(WEF) nexus using an improved matter−element extension model:A case study of China[J]. Journal of Cleaner Production,2018,202:1097−1106. DOI: 10.1016/j.jclepro.2018.08.213
[20] 曾一凡,武强,杜鑫,等. 再论含水层富水性评价的“富水性指数法”[J]. 煤炭学报,2020,45(7):2423−2431. ZENG Yifan,WU Qiang,DU Xin,et al. Further research on “water–richness index method” for evaluation of aquifer water abundance[J]. Journal of China Coal Society,2020,45(7):2423−2431.
[21] WANG Xiaoling,YU Hongling,LYU Peng,et al. Seepage safety assessment of concrete gravity Dam based on matter−element extension model and FDA[J]. Energies,2019,12(3):1−21.
[22] 董东林,李祥,林刚,等. 突水水源的独立性权–模糊可变理论识别模型[J]. 煤田地质与勘探,2019,47(5):48−53. DOI: 10.3969/j.issn.1001-1986.2019.05.007 DONG Donglin,LI Xiang,LIN Gang,et al. Identification model of the independence right–fuzzy variable theory of water inrush source[J]. Coal Geology & Exploration,2019,47(5):48−53. DOI: 10.3969/j.issn.1001-1986.2019.05.007
[23] 韩承豪,魏久传,谢道雷,等. 基于集对分析–可变模糊集耦合法的砂岩含水层富水性评价:以宁东矿区金家渠井田侏罗系直罗组含水层为例[J]. 煤炭学报,2020,45(7):2432−2443. HAN Chenghao,WEI Jiuchuan,XIE Daolei,et al. Water−richness evaluation of sandstone aquifer based on set pair analysis−variable fuzzy set coupling method:A case from Jurassic Zhiluo Formation of Jinjiaqu coal mine in Ningdong mining area[J]. Journal of China Coal Society,2020,45(7):2432−2443.
[24] 王心义,姚孟杰,张建国,等. 基于改进AHP法与模糊可变集理论的煤层底板突水危险性评价[J]. 采矿与安全工程学报,2019,36(3):558−565. WANG Xinyi,YAO Mengjie,ZHANG Jianguo,et al. Evaluation of water bursting in coal seam floor based on improved AHP and fuzzy variable set theory[J]. Journal of Mining and Safety Engineering,2019,36(3):558−565.
[25] LIU Shiliang,LI Wenping. Fuzzy comprehensive risk evaluation of roof water inrush based on catastrophe theory in the Jurassic coalfield of northwest China[J]. Journal of Intelligent & Fuzzy Systems,2019,37(3):1−11.
[26] 杜崧,肖明,陈俊涛. 洞室块体危险性分析的突变级数评价法研究[J]. 岩土力学,2021,42(9):2578−2588. DU Song,XIAO Ming,CHEN Juntao. Catastrophe progression method for geological block hazard analysis of underground caverns[J]. Rock and Soil Mechanics,2021,42(9):2578−2588.
[27] 姬亚东. 基于聚类分析与模糊综合评判的煤层顶板涌水危险性评价[J]. 矿业安全与环保,2019,46(4):68−72. DOI: 10.3969/j.issn.1008-4495.2019.04.015 JI Yadong. The risk assessment of roof water inrush based on cluster analysis and fuzzy comprehensive evaluation[J]. Mining Safety and Environmental Protection,2019,46(4):68−72. DOI: 10.3969/j.issn.1008-4495.2019.04.015
[28] 国家煤炭工业局. 建筑物、水体、铁路及主要井巷煤柱留设与压煤开采规程[M]. 北京: 煤炭工业出版社, 2000.