ZOU Hang, PEI Peng, HAO Dingyi, WANG Chen. Numerical analysis of the effect of different soil types and water content on heat transfer performance of horizontal buried pipes[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(6): 221-229. DOI: 10.3969/j.issn.1001-1986.2021.06.026
Citation: ZOU Hang, PEI Peng, HAO Dingyi, WANG Chen. Numerical analysis of the effect of different soil types and water content on heat transfer performance of horizontal buried pipes[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(6): 221-229. DOI: 10.3969/j.issn.1001-1986.2021.06.026

Numerical analysis of the effect of different soil types and water content on heat transfer performance of horizontal buried pipes

More Information
  • Received Date: March 30, 2021
  • Revised Date: September 17, 2021
  • Available Online: December 29, 2021
  • Published Date: December 24, 2021
  • In order to reveal the heat transfer performance of the horizontal buried pipe heat exchanger in the ground source heat pump system in different soil types, this paper, based on the theoretical knowledge of soil capillary water, combined with the means of numerical simulation, discusses the influence of the difference of three-phase composition in different types of energy storage soil on the heat transfer characteristics of the horizontal buried pipe heat exchanger. The results show that under the cooling condition of 308.15 K, the outlet water temperature of the horizontal pipe in the loam soil decreases to 303.3 K and the temperature difference between the inlet and outlet water is 4.9 K. The heat transfer perlinear meter of the buried pipe is 37.1 W/m. That means the heat transfer efficiency of the horizontal pipe in the loam soil is significant. When different soils(sandy soil, loam soil and clay soil) go through the same refrigeration cycle, the heat transfer process of the horizontal pipe has the least effect on the temperature distribution of loam soil, with the lowest thermal accumulation risk coefficient of the pipe. The research result shows that the soil heat conductivity has greater impact on the heat exchange capability of the horizontal pipe than the soil specific heat capacity. The heat transfer capacity of the horizontal pipe can be enhanced by compacting back fill materials, decreasing the porosity, improving the soil phase conductivity, and increasing the buried depth to utilize the higher specific heat capacity of groundwater.
  • [1]
    李永强, 徐拴海, 张卫东, 等. 套管式地埋管换热器热短路及换热性能[J]. 煤田地质与勘探, 2020, 48(1): 183–188. DOI: 10.3969/j.issn.1001-1986.2020.01.024

    LI Yongqiang, XU Shuanhai, ZHANG Weidong, et al. Thermal short-circuiting and heat transfer performance of coaxial borehole heat exchanger[J]. Coal Geology & Exploration, 2020, 48(1): 183–188. DOI: 10.3969/j.issn.1001-1986.2020.01.024
    [2]
    尚宏波, 赵春虎, 靳德武, 等. 中深层地热单井换热数值计算[J]. 煤田地质与勘探, 2019, 47(6): 159–166. http://mdkt.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=502d9acf-fdd9-406d-af57-804ad96b827e

    SHANG Hongbo, ZHAO Chunhu, JIN Dewu, et al. Numerical calculation of heat transfer in single medium-deep geothermal well[J]. Coal Geology & Exploration, 2019, 47(6): 159–166. http://mdkt.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=502d9acf-fdd9-406d-af57-804ad96b827e
    [3]
    吕艺青, 傅允准. 地源热泵系统夏季制冷间歇运行特性实验研究[J]. 太阳能学报, 2018, 39(2): 453–460. https://www.cnki.com.cn/Article/CJFDTOTAL-TYLX201802024.htm

    LYU Yiqing, FU Yunzhun. Experimental research of performance for refrigeration intermittent operation in summer of GSHP system[J]. Acta Energiae Solaris Sinica, 2018, 39(2): 453–460. https://www.cnki.com.cn/Article/CJFDTOTAL-TYLX201802024.htm
    [4]
    马最良, 吕悦. 地源热泵系统设计与应用[M]. 北京: 机械工业出版社, 2007.

    MA Zuiliang, LYU Yue. Design and application of ground source heat pump system[M]. Beijing: China Machine Press, 2007.
    [5]
    李新国. 埋地换热器内热源理论与地源热泵运行特性研究[D]. 天津: 天津大学, 2004.

    LI Xinguo. Study on inner heat source of underground heat exchanger and the ground coupled heat pump's performance[D]. Tianjin: Tianjin University, 2004.
    [6]
    PLATTS A B, CAMERON D A, WARD J. Improving the performance of ground coupled heat exchangers in unsaturated soils[J]. Energy Buildings, 2015, 104: 323–335. DOI: 10.1016/j.enbuild.2015.04.050
    [7]
    NOWAMOOZ H, NIKOOSOKHAN S, LIN Jian, et al. Finite difference modeling of heat distribution in multilayer soils with time-spatial hydrothermal properties[J]. Renewable Energy, 2015, 76: 7–15. DOI: 10.1016/j.renene.2014.11.008
    [8]
    BEAR J, BENSABAT J, NIR A. Heat and mass transfer in unsaturated porous media at a hot boundary: I. One-dimensional analytical model[J]. Transport in Porous Media, 1991, 6(3): 281–298.
    [9]
    林芸, 赵强, 方肇洪. 水平螺旋地埋管地源热泵的研究[J]. 暖通空调, 2010, 40(4): 104–109. DOI: 10.3969/j.issn.1002-8501.2010.04.027

    LIN Yun, ZHAO Qiang, FANG Zhaohong. Ground-source heat pump systems with horizontal spiral ground heat exchangers[J]. Heating Ventilating & Air Conditioning, 2010, 40(4): 104–109. DOI: 10.3969/j.issn.1002-8501.2010.04.027
    [10]
    李广信, 张丙印, 于玉贞. 土力学(第2版)[M]. 北京: 清华大学出版社, 2013.

    LI Guangxin, ZHANG Bingyin, Yu YUzhen. Soil mechanics(Second Edition)[M]. Beijing: Tsinghua University Press, 2013.
    [11]
    LU Ning, LIKOS W J. Unsaturated soil mechanics[M]. Hoboken, New Jersey: John Wiley & Sons Inc, 2004.
    [12]
    CHOI J C, LEE S R, LEE D S. Numerical simulation of vertical ground heat exchangers: Intermittent operation in unsaturated soil conditions[J/OL]. Computers and Geotechnics, 2011, 38(8): 949–958.
    [13]
    VAN GENUCHTEN M Th. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Journal, 1980, 44(5): 892–898. DOI: 10.2136/sssaj1980.03615995004400050002x
    [14]
    张玲. 土壤热湿传递与土壤源热泵的理论与实验研究[D]. 杭州: 浙江大学, 2006.

    ZHANG Ling. Theoretical and experimental study on heat and moisture transfer in soil and ground-source heat pump[D]. Hangzhou: Zhejiang University, 2006.
    [15]
    陈振乾, 施明恒, 虞维平. 研究土壤热湿迁移特性的非平衡热力学方法[J]. 土壤学报, 1998, 35(2): 218–226. DOI: 10.3321/j.issn:0564-3929.1998.02.010

    CHEN Zhenqian, SHI Mingheng, YU Weiping. Non-equilibrium thermodynamics method of heat and moisture transport properties in unsaturated soils[J]. Acta Pedologica Sinica, 1998, 35(2): 218–226. DOI: 10.3321/j.issn:0564-3929.1998.02.010
    [16]
    ZHOU W S, PEI P, HAO D Y, et al. A numerical study on the performance of ground heat exchanger buried in fractured rock bodies[J]. Energies, 2020, 13: 1647. DOI: 10.3390/en13071647
    [17]
    钱家欢, 殷宗泽. 土工原理与计算[M]. 北京: 中国水利水电出版社, 1996.

    QIAN Jiahuan, YIN Zongze. Geotechnical principle and calculation[M]. Beijing: China Water & Power Press, 1996.
    [18]
    李恩羊. 达西定律及其在非饱和土壤中的推广应用[J]. 农田水利与小水电, 1981(1): 42–44.

    LI Enyang. Darcy's Law and its application in unsaturated soil[J]. Farmland Water Conservancy and Small Hydropower, 1981(1): 42–44.
    [19]
    HEIN P, KOLDITZ O, GÖRKE U, et al. A numerical study on the sustainability and efficiency of borehole heat exchanger coupled ground source heat pump systems[J/OL]. Applied Thermal Engineering, 2016, 100: 421–433.
  • Related Articles

    [1]LIU Changye, YANG Xianyu, CAI Jihua, WANG Ren, WANG Jianlong, DAI Fanfei, GUO Wanyang, JIANG Guosheng, FENG Yang. Intelligent identification method of drilling fluid rheological parameters based on machine learning[J]. COAL GEOLOGY & EXPLORATION, 2024, 52(5): 183-192. DOI: 10.12363/issn.1001-1986.24.01.0055
    [2]MA Li, XUE Haijun, WEN Xiaogang, FENG Xihui. Prediction of K2 limestone and its aquosity by joint inversion of logging and seismic data[J]. COAL GEOLOGY & EXPLORATION, 2016, 44(4): 142-146. DOI: 10.3969/j.issn.1001-1986.2016.04.027
    [3]TANG Ying, LI Lezhong, JIANG Shixin, ZHANG Binhai, ZHONG Mihong, SUN Yuhong. Parameter selection and applicability of gas content logging interpretation methodology in coal seam[J]. COAL GEOLOGY & EXPLORATION, 2015, 43(4): 94-98. DOI: 10.3969/j.issn.1001-1986.2015.04.020
    [4]SUN Yuan, ZHANG Liang, ZHU Jun, XUE Tao, DING Juan. Application of seismic attribute parameters in forecasting coal seam thickness[J]. COAL GEOLOGY & EXPLORATION, 2008, 36(2): 58-60.
    [5]WU Guan-mao, HUANG Ming, LI Gang. Gas content prediction based on BP neural network[J]. COAL GEOLOGY & EXPLORATION, 2008, 36(1): 30-33.
    [6]CUI Ruo-fei, ZHONG Qi-tao, LI Jin-ping. Coal thickness interpretation prediction using seismic data[J]. COAL GEOLOGY & EXPLORATION, 2002, 30(3): 54-57.
    [7]HAN Wan-lin, ZHANG You-di, LI Liang. Forecasting coal layer thickness by BP neural network from multiple seismic parameters[J]. COAL GEOLOGY & EXPLORATION, 2001, 29(4): 53-54.
    [8]SHEN Nai-qi, YANG Jian-wei, ZHENG Xi-ping. Prediction of mining collapse based on neural network[J]. COAL GEOLOGY & EXPLORATION, 2001, 29(3): 42-44.
    [9]Fang Zhijiang, Qu Zheng. APPLICATION OF BP NEURAL NETWORK IN ENVIRONMENTAL RECOGNITION MODEL[J]. COAL GEOLOGY & EXPLORATION, 2000, 28(2): 13-15.
    [10]Chen Jiangfeng. THE RELATIONSHIP BETWEEN FRACTAL DIMENSION OF FISSURE NETWORK AND PERMEABILITY[J]. COAL GEOLOGY & EXPLORATION, 1999, 27(3): 50-52.
  • Cited by

    Periodical cited type(13)

    1. 弓毅伟,陈杰华,唐欣薇. 砂土地层暗挖施工结合MJS工法应用研究. 施工技术(中英文). 2024(23): 36-41+46 .
    2. 姚志雄,夏华灿,黄敏,陈进,李健. 福州滨海软土MJS工法桩加固施工及环境效应. 地下空间与工程学报. 2023(03): 1019-1026+1037 .
    3. 姚志雄,夏华灿,吴波,郑国文. MJS工法桩在滨海地区软基加固工程中的应用. 人民长江. 2023(10): 141-149 .
    4. 刘欣,杨平,郑盛,王岩梓,陈潋,杨宁. MJS水泥土的试桩成桩效果. 林业工程学报. 2022(01): 169-176 .
    5. 陈潋. 水平MJS在地下通道中的施工应用. 科技与创新. 2022(09): 162-164 .
    6. 苗贺朝,褚振尧,黄选明,曹海东,姚恒,王海. 矿山砂卵石地层中截水帷幕长幅槽段稳定性研究. 煤田地质与勘探. 2022(07): 18-27 . 本站查看
    7. 宋欢. MJS高压旋喷桩在基坑围护结构断口处的应用. 天津建设科技. 2021(01): 12-15 .
    8. 熊仲明,覃泽宏,蔡虹,汪肆卜. 富水砂层盾构始发MJS工法桩的应用及分析. 铁道工程学报. 2021(03): 8-12+64 .
    9. 冯国卫. RJP与三重管高压旋喷工艺在基坑加固工程中施工工艺对比分析. 城市道桥与防洪. 2021(08): 212-214+238+25 .
    10. 王鹏,李林. 动水含砂层大直径超深高压旋喷桩施工技术. 城市道桥与防洪. 2021(10): 150-152+19 .
    11. 罗帅训,赵建勃,贺雪峰,韦波锋. 高压旋喷多管喷头的研制. 探矿工程(岩土钻掘工程). 2020(07): 78-81+87 .
    12. 朱明诚,韩强,赵贵斌,刘玉柱. 卵砾石含水层高压旋喷注浆止水帷幕技术. 煤田地质与勘探. 2020(04): 74-79 . 本站查看
    13. 王海,彭巍,曹海东,王丽. 露天煤矿截水帷幕效果检验方法及截水效果分析. 煤田地质与勘探. 2020(04): 87-93 . 本站查看

    Other cited types(4)

Catalog

    Article Metrics

    Article views (300) PDF downloads (27) Cited by(17)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return