ZOU Hang, PEI Peng, HAO Dingyi, WANG Chen. Numerical analysis of the effect of different soil types and water content on heat transfer performance of horizontal buried pipes[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(6): 221-229. DOI: 10.3969/j.issn.1001-1986.2021.06.026
Citation: ZOU Hang, PEI Peng, HAO Dingyi, WANG Chen. Numerical analysis of the effect of different soil types and water content on heat transfer performance of horizontal buried pipes[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(6): 221-229. DOI: 10.3969/j.issn.1001-1986.2021.06.026

Numerical analysis of the effect of different soil types and water content on heat transfer performance of horizontal buried pipes

More Information
  • Received Date: March 30, 2021
  • Revised Date: September 17, 2021
  • Available Online: December 29, 2021
  • Published Date: December 24, 2021
  • In order to reveal the heat transfer performance of the horizontal buried pipe heat exchanger in the ground source heat pump system in different soil types, this paper, based on the theoretical knowledge of soil capillary water, combined with the means of numerical simulation, discusses the influence of the difference of three-phase composition in different types of energy storage soil on the heat transfer characteristics of the horizontal buried pipe heat exchanger. The results show that under the cooling condition of 308.15 K, the outlet water temperature of the horizontal pipe in the loam soil decreases to 303.3 K and the temperature difference between the inlet and outlet water is 4.9 K. The heat transfer perlinear meter of the buried pipe is 37.1 W/m. That means the heat transfer efficiency of the horizontal pipe in the loam soil is significant. When different soils(sandy soil, loam soil and clay soil) go through the same refrigeration cycle, the heat transfer process of the horizontal pipe has the least effect on the temperature distribution of loam soil, with the lowest thermal accumulation risk coefficient of the pipe. The research result shows that the soil heat conductivity has greater impact on the heat exchange capability of the horizontal pipe than the soil specific heat capacity. The heat transfer capacity of the horizontal pipe can be enhanced by compacting back fill materials, decreasing the porosity, improving the soil phase conductivity, and increasing the buried depth to utilize the higher specific heat capacity of groundwater.
  • [1]
    李永强, 徐拴海, 张卫东, 等. 套管式地埋管换热器热短路及换热性能[J]. 煤田地质与勘探, 2020, 48(1): 183–188. DOI: 10.3969/j.issn.1001-1986.2020.01.024

    LI Yongqiang, XU Shuanhai, ZHANG Weidong, et al. Thermal short-circuiting and heat transfer performance of coaxial borehole heat exchanger[J]. Coal Geology & Exploration, 2020, 48(1): 183–188. DOI: 10.3969/j.issn.1001-1986.2020.01.024
    [2]
    尚宏波, 赵春虎, 靳德武, 等. 中深层地热单井换热数值计算[J]. 煤田地质与勘探, 2019, 47(6): 159–166. http://mdkt.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=502d9acf-fdd9-406d-af57-804ad96b827e

    SHANG Hongbo, ZHAO Chunhu, JIN Dewu, et al. Numerical calculation of heat transfer in single medium-deep geothermal well[J]. Coal Geology & Exploration, 2019, 47(6): 159–166. http://mdkt.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=502d9acf-fdd9-406d-af57-804ad96b827e
    [3]
    吕艺青, 傅允准. 地源热泵系统夏季制冷间歇运行特性实验研究[J]. 太阳能学报, 2018, 39(2): 453–460. https://www.cnki.com.cn/Article/CJFDTOTAL-TYLX201802024.htm

    LYU Yiqing, FU Yunzhun. Experimental research of performance for refrigeration intermittent operation in summer of GSHP system[J]. Acta Energiae Solaris Sinica, 2018, 39(2): 453–460. https://www.cnki.com.cn/Article/CJFDTOTAL-TYLX201802024.htm
    [4]
    马最良, 吕悦. 地源热泵系统设计与应用[M]. 北京: 机械工业出版社, 2007.

    MA Zuiliang, LYU Yue. Design and application of ground source heat pump system[M]. Beijing: China Machine Press, 2007.
    [5]
    李新国. 埋地换热器内热源理论与地源热泵运行特性研究[D]. 天津: 天津大学, 2004.

    LI Xinguo. Study on inner heat source of underground heat exchanger and the ground coupled heat pump's performance[D]. Tianjin: Tianjin University, 2004.
    [6]
    PLATTS A B, CAMERON D A, WARD J. Improving the performance of ground coupled heat exchangers in unsaturated soils[J]. Energy Buildings, 2015, 104: 323–335. DOI: 10.1016/j.enbuild.2015.04.050
    [7]
    NOWAMOOZ H, NIKOOSOKHAN S, LIN Jian, et al. Finite difference modeling of heat distribution in multilayer soils with time-spatial hydrothermal properties[J]. Renewable Energy, 2015, 76: 7–15. DOI: 10.1016/j.renene.2014.11.008
    [8]
    BEAR J, BENSABAT J, NIR A. Heat and mass transfer in unsaturated porous media at a hot boundary: I. One-dimensional analytical model[J]. Transport in Porous Media, 1991, 6(3): 281–298.
    [9]
    林芸, 赵强, 方肇洪. 水平螺旋地埋管地源热泵的研究[J]. 暖通空调, 2010, 40(4): 104–109. DOI: 10.3969/j.issn.1002-8501.2010.04.027

    LIN Yun, ZHAO Qiang, FANG Zhaohong. Ground-source heat pump systems with horizontal spiral ground heat exchangers[J]. Heating Ventilating & Air Conditioning, 2010, 40(4): 104–109. DOI: 10.3969/j.issn.1002-8501.2010.04.027
    [10]
    李广信, 张丙印, 于玉贞. 土力学(第2版)[M]. 北京: 清华大学出版社, 2013.

    LI Guangxin, ZHANG Bingyin, Yu YUzhen. Soil mechanics(Second Edition)[M]. Beijing: Tsinghua University Press, 2013.
    [11]
    LU Ning, LIKOS W J. Unsaturated soil mechanics[M]. Hoboken, New Jersey: John Wiley & Sons Inc, 2004.
    [12]
    CHOI J C, LEE S R, LEE D S. Numerical simulation of vertical ground heat exchangers: Intermittent operation in unsaturated soil conditions[J/OL]. Computers and Geotechnics, 2011, 38(8): 949–958.
    [13]
    VAN GENUCHTEN M Th. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Journal, 1980, 44(5): 892–898. DOI: 10.2136/sssaj1980.03615995004400050002x
    [14]
    张玲. 土壤热湿传递与土壤源热泵的理论与实验研究[D]. 杭州: 浙江大学, 2006.

    ZHANG Ling. Theoretical and experimental study on heat and moisture transfer in soil and ground-source heat pump[D]. Hangzhou: Zhejiang University, 2006.
    [15]
    陈振乾, 施明恒, 虞维平. 研究土壤热湿迁移特性的非平衡热力学方法[J]. 土壤学报, 1998, 35(2): 218–226. DOI: 10.3321/j.issn:0564-3929.1998.02.010

    CHEN Zhenqian, SHI Mingheng, YU Weiping. Non-equilibrium thermodynamics method of heat and moisture transport properties in unsaturated soils[J]. Acta Pedologica Sinica, 1998, 35(2): 218–226. DOI: 10.3321/j.issn:0564-3929.1998.02.010
    [16]
    ZHOU W S, PEI P, HAO D Y, et al. A numerical study on the performance of ground heat exchanger buried in fractured rock bodies[J]. Energies, 2020, 13: 1647. DOI: 10.3390/en13071647
    [17]
    钱家欢, 殷宗泽. 土工原理与计算[M]. 北京: 中国水利水电出版社, 1996.

    QIAN Jiahuan, YIN Zongze. Geotechnical principle and calculation[M]. Beijing: China Water & Power Press, 1996.
    [18]
    李恩羊. 达西定律及其在非饱和土壤中的推广应用[J]. 农田水利与小水电, 1981(1): 42–44.

    LI Enyang. Darcy's Law and its application in unsaturated soil[J]. Farmland Water Conservancy and Small Hydropower, 1981(1): 42–44.
    [19]
    HEIN P, KOLDITZ O, GÖRKE U, et al. A numerical study on the sustainability and efficiency of borehole heat exchanger coupled ground source heat pump systems[J/OL]. Applied Thermal Engineering, 2016, 100: 421–433.
  • Related Articles

    [1]QIN Lei, WANG Ping, LI Shugang, WANG Hui, LIU Pengfei, LI Jiawei, LIN Haifei. Coal permeability enhancement via cyclic percussion using low-temperature liquid CO2 and high-temperature water vapor and simulations of resultant gas drainage performance[J]. COAL GEOLOGY & EXPLORATION, 2024, 52(9): 67-79. DOI: 10.12363/issn.1001-1986.24.01.0020
    [2]HAN Yuanhong, LYU Jun, ZHANG Yuping, LUO Naning, LI Bing, SHEN Xiaolong. Genetic mechanisms of low-temperature geothermal water and its associated helium gas in Meixian County in the piedmont of Qinling Mountains[J]. COAL GEOLOGY & EXPLORATION, 2024, 52(1): 168-176. DOI: 10.12363/issn.1001-1986.23.10.0639
    [3]REN Hengxing, HE Huan, LIU Fangjing, WANG Meilin, ZHAO Na, GUO Xin, CHEN Linyong, ZHAO Han, YUAN Xuefang, GUAN Jiadong, YUE Lijiao. Biogas production and variation of the chemical composition of the high temperature water extract of lignite[J]. COAL GEOLOGY & EXPLORATION, 2020, 48(4): 132-137. DOI: 10.3969/j.issn.1001-1986.2020.04.019
    [4]PENG Wei, WANG Hai, WANG Zhongquan, Bu Guiling. Properties of the occluded pile curtain material under low temperature and dynamic water condition in deep and thick gravel layer[J]. COAL GEOLOGY & EXPLORATION, 2020, 48(4): 80-86. DOI: 10.3969/j.issn.1001-1986.2020.04.012
    [5]YANG Yang, ZHOU Zhusheng, XIE Wei, LIU Siqin, XIE Jing. Induced polarization characteristics of “three phases” in coal goaf[J]. COAL GEOLOGY & EXPLORATION, 2018, 46(6): 174-180. DOI: 10.3969/j.issn.1001-1986.2018.06.026
    [6]YE Wanjun, LIU Zhongxiang, YANG Gengshe, ZHAO Zhipeng. Test of water migration of remolded loess under temperature variation[J]. COAL GEOLOGY & EXPLORATION, 2017, 45(4): 126-130. DOI: 10.3969/j.issn.1001-1986.2017.04.022
    [7]MA Lei, QIAN Jiazhong, ZHAO Weidong. An approach for quickly identifying water-inrush source of mine based on GIS and groundwater chemistry and temperature[J]. COAL GEOLOGY & EXPLORATION, 2014, 42(2): 49-53. DOI: 10.3969/j.issn.1001-1986.2014.02.010
    [8]CHEN Chun-lin, YE Gui-jun. Double-phase liquid system of gas-water in coal reservoir[J]. COAL GEOLOGY & EXPLORATION, 2003, 31(5): 23-26.
    [9]Wang Guangcai. THE TEMPERATURE ESTIMATION OF DEEP GEOTHERMAL WATER IN PINGDINGSHAN COALFIELD[J]. COAL GEOLOGY & EXPLORATION, 1996, 24(5): 40-42.
    [10]Guo Chongguang. THE APPLICATION OF THERMOLOGGING IN KARST WATER EXPLORATION[J]. COAL GEOLOGY & EXPLORATION, 1993, 21(1): 44-49.

Catalog

    Article Metrics

    Article views (300) PDF downloads (27) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return