ZHAO Chunhu, YANG Jian, WANG Shidong, ZHOU Jianjun, XU Feng, LIU Ji. Coupling simulation of groundwater dynamics and solute transfer in the process of deep reinjection of mine water[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(5): 36-44. DOI: 10.3969/j.issn.1001-1986.2021.05.004
Citation: ZHAO Chunhu, YANG Jian, WANG Shidong, ZHOU Jianjun, XU Feng, LIU Ji. Coupling simulation of groundwater dynamics and solute transfer in the process of deep reinjection of mine water[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(5): 36-44. DOI: 10.3969/j.issn.1001-1986.2021.05.004

Coupling simulation of groundwater dynamics and solute transfer in the process of deep reinjection of mine water

More Information
  • Received Date: April 07, 2021
  • Revised Date: August 04, 2021
  • Available Online: November 05, 2021
  • Published Date: October 24, 2021
  • The deep well reinjection of mine water is a main form of "transfer storage" treatment of mine water. According to the geological and mine water characteristics of the coal mine area in Ordos Basin, the paper puts forward the basis for selecting the target layer of mine water reinjection from the perspective of good matching between groundwater and mine water in the target layer of reinjection, the water isolation of upper and lower strata, permeability and sealing of the reinjection layer. Based on Darcy's law of groundwater and Dupuit's theory, a mathematical model of steady flow of water injection well in polar coordinate system is established. It is concluded that under the condition of steady water injection, the reinjection quantity is positively correlated with the permeability coefficient, thickness, reinjection pressure, water level burial depth and reinjection well diameter of water injection layer, negatively correlated with the influence radius, and it has nothing to do with the burial depth of water injection layer. The construction method of coupling simulation model of groundwater dynamics and solute transfer in the process of deep mine water reinjection was put forward, and mine water reinjection test was taken as the analysis object. The simulation results show that the formation of water injection well is the "high water mound" in the process of high-pressure mine water reinjection; the higher the injection pressure is, the more obvious the reinjection amount is. The model analysis results are basically consistent with the field test results. Moreover, the solute transfer range forms a "cylindrical" dispersion shape centered on the water injection well; the ion concentration changes sharply along both sides of the reinjection well; the ion concentration of the aquifer is rapidly diluted. With the extension of time, the increase of dispersion dilution range is relatively small, which indicates that the relative recharge of mine water has little effect on groundwater chemistry of deep high concentration aquifer. The research results are expected to provide scientific basis for efficient recharge of mine water in western coal mining area.
  • [1]
    范立民, 马雄德, 冀瑞君. 西部生态脆弱矿区保水采煤研究与实践进展[J]. 煤炭学报, 2015, 40(8): 1711-1717. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201508001.htm

    FAN Limin, MA Xiongde, JI Ruijun. Progress in engineering practice of water-preserved coal mining in western eco-environment frangible area[J]. Journal of China Coal Society, 2015, 40(8): 1711-1717. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201508001.htm
    [2]
    武强, 赵苏启, 孙文洁, 等. 中国煤矿水文地质类型划分与特征分析[J]. 煤炭学报, 2013, 38(6): 901-905. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201306003.htm

    WU Qiang, ZHAO Suqi, SUN Wenjie, et al. Classification of the hydrogeological type of coal mine and analysis of its characteristics in China[J]. Journal of China Coal Society, 2013, 38(6): 901-905. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201306003.htm
    [3]
    孙亚军, 陈歌, 徐智敏, 等. 我国煤矿区水环境现状及矿井水处理利用研究进展[J]. 煤炭学报, 2020, 45(1): 304-316. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202001031.htm

    SUN Yajun, CHEN Ge, XU Zhimin, et al. Research progress of water environment, treatment and utilization in coal mining areas of China[J]. Journal of China Coal Society, 2020, 45(1): 304-316. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202001031.htm
    [4]
    郝春明, 张伟, 何瑞敏, 等. 神东矿区高氟矿井水分布特征及形成机制[J]. 煤炭学报. https://kns.cnki.net/kcms/detail/11.2190.td.20210317.1110.003.html

    HAO Chunming, ZHANG Wei, HE Ruimin, et al. Formation mechanisms for elevated fluoride in the mine water in Shendong coal-mining district[J]. Journal of China Coal Society. https://kns.cnki.net/kcms/detail/11.2190.td.20210317.1110.003.html
    [5]
    张杰, 侯忠杰. 榆树湾浅埋煤层保水开采三带发展规律研究[J]. 湖南科技大学学报(自然科学版), 2006, 21(4): 10-13. https://www.cnki.com.cn/Article/CJFDTOTAL-XTKY200604002.htm

    ZHANG Jie, HOU Zhongjie. Research on the development law of three zones of water-conserving mining in shallow coal seam of Yushuwan[J]. Journal of Hunan University of Science and Technology(Natural Science Edition), 2006, 21(4): 10-13. https://www.cnki.com.cn/Article/CJFDTOTAL-XTKY200604002.htm
    [6]
    MA Liqiang, JIN Zhiyuan, LIANG Jimeng, et al. Simulation of water resource loss in short-distance coal seams disturbed by repeated mining[J]. Environmental Earth Sciences, 2015, 74(7): 5653-5662. DOI: 10.1007/s12665-015-4581-6
    [7]
    彭小沾, 崔希民, 李春意, 等. 陕北浅煤层房柱式保水开采设计与实践[J]. 采矿与安全工程学报, 2008, 25(3): 301-304. DOI: 10.3969/j.issn.1673-3363.2008.03.011

    PENG Xiaozhan, CUI Ximin, LI Chunyi, et al. Design and practice of room & pillar water-preserved mining for shallowly buried coal seam in north of Shaanxi Province[J]. Journal of Mining & Safety Engineering, 2008, 25(3): 301 -304. DOI: 10.3969/j.issn.1673-3363.2008.03.011
    [8]
    黄庆享, 张文忠. 浅埋煤层条带充填隔水岩组力学模型分析[J]. 煤炭学报, 2015, 40(5): 973-978. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201505002.htm

    HUANG Qingxiang, ZHANG Wenzhong. Mechanical model of water resisting strata group in shallow seam strip-filling mining[J]. Journal of China Coal Society, 2015, 40(5): 973-978. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201505002.htm
    [9]
    马立强, 张东升, 王烁康, 等. "采充并行"式保水采煤方法[J]. 煤炭学报, 2018, 43(1): 62-69. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201801008.htm

    MA Liqiang, ZHANG Dongsheng, WANG Shuokang, et al. Water-preserved mining with the method named "backfilling while mining"[J]. Journal of China Coal Society, 2018, 43(1): 62-69. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201801008.htm
    [10]
    范立民. 保水采煤的科学内涵[J]. 煤炭学报, 2017, 42(1): 27-35. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201701004.htm

    FAN Limin. Scientific connotation of water-preserved mining[J]. Journal of China Coal Society, 2017, 42(1): 27-35. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201701004.htm
    [11]
    董书宁, 杨志斌, 姬中奎, 等. 神府矿区大型水库旁烧变岩水保水开采技术研究[J]. 煤炭学报, 2019, 44(3): 709-717. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201903007.htm

    DONG Shuning, YANG Zhibin, JI Zhongkui, et al. Study on water-preserved mining technology of burnt rock aquifer beside the large reservoir in Shenfu mining area[J]. Journal of China Coal Society, 2019, 44(3): 709-717. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201903007.htm
    [12]
    张雁, 黄选明, 彭巍, 等. 截水帷幕在露天煤矿截渗减排中的应用[J]. 煤炭学报, 2020, 45(5): 1865-1873. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202005032.htm

    ZHANG Yan, HUANG Xuanming, PENG Wei, et al. Application of water cutoff curtain in the seepage cutoff and drainage reduction of open-pit coal mine[J]. Journal of China Coal Society, 2020, 45(5): 1865-1873. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202005032.htm
    [13]
    顾大钊, 张勇, 曹志国. 我国煤炭开采水资源保护利用技术研究进展[J]. 煤炭科学技术, 2016, 44(1): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201601001.htm

    GU Dazhao, ZHANG Yong, CAO Zhiguo. Technical progress of water resource protection and utilization by coal mining in China[J]. Coal Science and Technology, 2016, 44(1): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201601001.htm
    [14]
    顾大钊. 煤矿地下水库理论框架和技术体系[J]. 煤炭学报, 2015, 40(2): 239-246. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201502001.htm

    GU Dazhao. Theory framework and technological system of coal mine underground reservoir[J]. Journal of China Coal Society, 2015, 40(2): 239-246. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201502001.htm
    [15]
    任学勤, 程晓博, 王文才, 等. 基于"两零循环"的矿井水综合利用技术[J]. 河北冶金, 2019(9): 79-82. https://www.cnki.com.cn/Article/CJFDTOTAL-HBYJ201909018.htm

    REN Xueqin, CHENG Xiaobo, WANG Wencai, et al. Comprehensive utilization technology of mine water based on "two zero cycle"[J]. Hebei Metallurgy, 2019(9): 79-82. https://www.cnki.com.cn/Article/CJFDTOTAL-HBYJ201909018.htm
    [16]
    李世峰, 高文婷, 牛永强, 等. 矿井废水回灌工程试验研究[J]. 河北工程大学学报(自然科学版), 2012, 29(3): 66-70. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXU201204018.htm

    LI Shifeng, GAO Wenting, NIU Yongqiang, et al. The experimental study on recharge engineering of mine wastewater[J]. Journal of Hebei University of Engineering(Natural Science Edition), 2012, 29(3): 66-70. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXU201204018.htm
    [17]
    孙亚军, 张梦飞, 高尚, 等. 典型高强度开采矿区保水采煤关键技术与实践[J]. 煤炭学报, 2017, 42(1): 56-65. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201701008.htm

    SUN Yajun, ZHANG Mengfei, GAO Shang, et al. Water-preserved mining technology and practice in typical high intensity mining area of China[J]. Journal of China Coal Society, 2017, 42(1): 56-65. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201701008.htm
    [18]
    曾繁富, 左明星, 宋洪柱, 等. 乌审旗一带刘家沟组作为高矿化度矿井水回灌目的层的可行性分析[J]. 煤炭与化工, 2020, 43(11): 59-62. https://www.cnki.com.cn/Article/CJFDTOTAL-HHGZ202011016.htm

    ZENG Fanfu, ZUO Mingxing, SONG Hongzhu, et al. Feasibility analysis of the Liujiagou Group in the Wushen Banner area as a target layer for water recharge in highly mineralized mines[J]. Coal and Chemical Industry, 2020, 43(11): 59-62. https://www.cnki.com.cn/Article/CJFDTOTAL-HHGZ202011016.htm
    [19]
    杨光辉, 朱开成, 晏嘉. 基于屈服强度理论的深埋砂岩可注性研究[J]. 中国煤炭地质, 2020, 32(8): 62-66. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMT202008012.htm

    YANG Guanghui, ZHU Kaicheng, YAN Jia. Study on deeply buried sandstone water inject ability based on yield strength theory[J]. Coal Geology of China, 2020, 32(8): 62-66. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMT202008012.htm
    [20]
    陈歌. 鄂尔多斯盆地东缘矿井水深部转移存储机理研究[D]. 徐州: 中国矿业大学, 2020.

    CHEN Ge. Study on the deep transfer and storage mechanism of mine water in the eastern margin of Ordos basin[D]. Xuzhou: China University of Mining and Technology, 2020.
    [21]
    卞伟, 李井峰, 顾大钊, 等. 西部矿区高矿化度矿井水膜蒸馏处理技术[J]. 煤炭科学技术. http://kns.cnki.net/kcms/detail/11.2402.TD.20200207.1604.027.html

    BIAN Wei, LI Jingfeng, GU Dazhao, et al. Technology of membrane distillation treatment for highly-mineralized mine water in western mining area[J]. Coal Science and Technology. http://kns.cnki.net/kcms/detail/11.2402.TD.20200207.1604.027.html
    [22]
    葛光荣, 吴一平, 张全. 高矿化度矿井水适度脱盐工艺研究[J]. 煤炭科学技术. https://kns.cnki.net/kcms/detail/11.2402.TD.20210129.1629.002.html

    GE Guangrong, WU Yiping, ZHANG Quan. Study on the moderate desalination process of high salinity mine water[J]. Coal Science and Technology[J]. https://kns.cnki.net/kcms/detail/11.2402.TD.20210129.1629.002.html
    [23]
    周新平, 邓秀芹, 李士祥, 等. 鄂尔多斯盆地延长组下组合地层水特征及其油气地质意义[J]. 岩性油气藏, 2021, 33(1): 109-120. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX202101011.htm

    ZHOU Xinping, DENG Xiuqin, LI Shixiang, et al. Characteristics of formation water and its geological significance of lower combination of Yanchang Formation in Ordos Basin[J]. Lithologic Reservoirs, 2021, 33(1): 109-120. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX202101011.htm
    [24]
    战沙, 张金功, 席辉. 鄂尔多斯盆地苏里格地区上古生界主要裂缝的测井识别[J]. 内蒙古石油化工, 2010, 36(10): 64-66. https://www.cnki.com.cn/Article/CJFDTOTAL-NMSH201010026.htm

    ZHAN Sha, ZHANG Jingong, XI Hui. Logging identification of the main fractures in the upper Paleozoic in Sulige area of Ordos basin[J]. Inner Mongolia Petrochemical Industry, 2010, 36(10): 64-66. https://www.cnki.com.cn/Article/CJFDTOTAL-NMSH201010026.htm
    [25]
    谭聪. 鄂尔多斯盆地上二叠统-中上三叠统沉积特征及古气候演化[D]. 北京: 中国地质大学(北京), 2017.

    TAN Cong. Sedimentary characteristics and paleocliamate evolution of the upper Permian and middle upper Triassic strata in Ordos Basin, China[D]. Beijing: China University of Geosciences(Beijing), 2017.
    [26]
    刁玉杰. 神华CCS示范工程场地储层表征与CO2运移规律研究[D]. 北京: 中国矿业大学(北京), 2017.

    DIAO Yujie. Study on the reservoir characterization and CO2 migration underground in the Shenhua CCS demonstration project site[D]. Beijing: China University of Geosciences(Beijing), 2017.
    [27]
    江成鑫, 赵江, 张洪文. 复杂岩溶条件下锰矿尾矿库地下水溶质运移特征数值模拟研究[J]. 中国环境监测, 2021, 37(1): 95-102. https://www.cnki.com.cn/Article/CJFDTOTAL-IAOB202101017.htm

    JIANG Chengxin, ZHAO Jiang, ZHANG Hongwen. Numerical simulation of solute transport characteristics in groundwater of manganese tailings reservoir under complex karst conditions[J]. Environmental Monitoring in China, 2021, 37(1): 95-102. https://www.cnki.com.cn/Article/CJFDTOTAL-IAOB202101017.htm
  • Related Articles

    [1]LI Lei, LU Shouqing, CHU Tingxiang, ZHONG Xiaoxing, LIU Chongyang, REN Ting. Evolutionary mechanisms and models of strain, porosity, and permeability of compacted broken coals[J]. COAL GEOLOGY & EXPLORATION, 2024, 52(5): 37-45. DOI: 10.12363/issn.1001-1986.23.11.0743
    [2]HAO Zhiyong, YUE Lixin, SUN Keming, WANG Shuailing. Experiment study on the porosity and permeability of low permeability coal by supercritical CO2 temperature variation[J]. COAL GEOLOGY & EXPLORATION, 2018, 46(3): 64-71. DOI: 10.3969/j.issn.1001-1986.2018.03.012
    [3]FU Xiaolong, DAI Junsheng, ZHANG Dandan, ZOU Juan, XU Ke. Prediction of fractures of seam No.3 in northern Shizhuang, Qinshui basin[J]. COAL GEOLOGY & EXPLORATION, 2017, 45(1): 56-61. DOI: 10.3969/j.issn.1001-1986.2017.01.011
    [4]LYU Yumin, TANG Dazhen, XU Hao. Stress sensitivity and difference of porosity and permeability in coal reservoirs in Hangcheng CBM block[J]. COAL GEOLOGY & EXPLORATION, 2013, 41(6): 31-34. DOI: 10.3969/j.issn.1001-1986.2013.06.008
    [5]WU Jianguo, TANG Dazhen, LI Song, WANG Ai, TANG Hailiang. Characteristics of the pore-microfracture system of coal reservoirs in Enhong area, Yunnan province[J]. COAL GEOLOGY & EXPLORATION, 2012, 40(4): 29-33. DOI: 10.3969/j.issn.1001-1986.2012.04.007
    [6]CHEN Yilin, LI Zhuangfu, QIN Yong. The mechanism of secondary porosity in Taiyuan sandstone, at Shuangshan region, Ordos basin[J]. COAL GEOLOGY & EXPLORATION, 2011, 39(1): 11-15. DOI: 10.3969/j.issn.1001-1986.2011.01.003
    [7]LI Xiao-yan, DU Xin-feng, CHEN Hong-chun. Laboratory measurement of coal permeability in Xinji mining area[J]. COAL GEOLOGY & EXPLORATION, 2001, 29(6): 23-26.
    [8]Guo Deyong, Han Dexin, Feng Zhiliang. EXPERIMENTAL STUDY ON THE POROSITY AND PERMEABILITY OF DISTURBED COAL UNDER CONFINED PRESSURE[J]. COAL GEOLOGY & EXPLORATION, 1998, 26(4): 31-34.
    [9]Zhang Jing, Han Baoping, Tang Jiaxiang, Feng Qiyan. THE PORE STRUCTURAL CHARACTERISTICS IN COALS, AND ROOF AND FLOOR ROCKS[J]. COAL GEOLOGY & EXPLORATION, 1998, 26(2): 28-31.
    [10]SU Fu-yi. VARIATIONAL CHARACTERISTIC OF COAL FOROSITY UNDER DIFFERENT CONFINING PRESSURES AND ITS APPLICATION[J]. COAL GEOLOGY & EXPLORATION, 1994, 22(3): 27-31.
  • Cited by

    Periodical cited type(8)

    1. 张旭辉,解彦彬,杨文娟,张超,万继成,董征,王彦群,蒋杰,李龙. 煤矿井下采掘工作场景非均质图像去雾与增强技术. 煤田地质与勘探. 2025(01): 245-256 . 本站查看
    2. 张铁聪,陈华州,赵俊杰,王利景,贾冬冬. 基于数字孪生技术的煤矿掘进机自动截割方法研究. 中国煤炭. 2024(01): 93-100 .
    3. 贾澎涛,靳路伟,王斌,郭风景,李娜. 采煤机截割部低照度图像的边缘检测技术. 煤田地质与勘探. 2024(04): 172-178 . 本站查看
    4. 张旭辉,王悦,杨文娟,陈鑫,张超,黄梦瑶,刘彦徽,杨骏豪. 基于改进最佳缝合线的矿井图像拼接方法. 工矿自动化. 2024(04): 9-17 .
    5. 汪进超,韩增强,王益腾,王超,张国华. 基于像素空间信息的孔内低照度图像孔隙结构量化方法研究. 岩石力学与工程学报. 2024(S1): 3175-3186 .
    6. 丁序海,张侯,陈录平,党国杰. 基于多频无线电坑透技术的煤矿地质综合勘探研究. 能源与环保. 2024(06): 82-87 .
    7. 肖耀猛. 目标背景对比度优化下高煤尘低照度环境主动成像技术. 矿山机械. 2024(09): 60-65 .
    8. 陶荣颖,王守军,李南,朱伟. 煤矿副井口全景智能识别技术的研究与应用. 内蒙古煤炭经济. 2024(22): 154-156 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views PDF downloads Cited by(10)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return