Citation: | CHEN Xing, ZHAO Zhou, WEI Jiangbo, XU Chong. Numerical study of Mabian landslide kinematics and impact intensity[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(4): 234-241. DOI: 10.3969/j.issn.1001-1986.2021.04.028 |
[1] |
胡晓波, 樊晓一, 唐俊杰. 基于离散元的高速远程滑坡运动堆积特征及能量转化研究: 以三溪村滑坡为例[J]. 地质力学学报, 2019, 25(4): 527-535. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX201904009.htm
HU Xiaobo, FAN Xiaoyi, TANG Junjie. Accumulation characteristics and energy conversion of high-speed and long-distance landslide on the basis of DEM: A case study of Sanxicun landslide[J]. Journal of Geomechanics, 2019, 25(4): 527-535. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX201904009.htm
|
[2] |
LO Chiaming, LEE Chingfang, HUANG Weikai. Failure mechanism analysis of rainfall-induced landslide at Pingguang stream in Taiwan: Mapping, investigation, and numerical simulation[J]. Environmental Earth Sciences, 2016, 75(21): 1-20.
|
[3] |
SHI Chong, LI Dejie, CHEN Kaihua, et al. Failure mechanism and stability analysis of the Zhenggang landslide in Yunnan Province of China using 3D particle flow code simulation[J]. Journal of Mountain Science, 2016, 13(5): 891-905. DOI: 10.1007/s11629-014-3399-0
|
[4] |
TANG Chaolung, HU Jyrching, LIN Minglang, et al. The Tsaoling landslide triggered by the Chi-Chi earthquake, Taiwan: Insights from a discrete element simulation[J]. Engineering Geology, 2009, 106(1/2): 1-19. http://www.sciencedirect.com/science/article/pii/S0013795209000489
|
[5] |
陈达, 薛喜成, 魏江波. 基于PFC2D的刘涧滑坡破坏运动过程模拟[J]. 煤田地质与勘探, 2018, 46(4): 115-121. http://mdkt.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=6bf79b3f-2749-4ffc-b50c-d9fe84f26e90
CHEN Da, XUE Xicheng, WEI Jiangbo. Simulation of failure process of Liujian landslide based on PFC2D[J]. Coal Geology & Exploration, 2018, 46(4): 115-121. http://mdkt.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=6bf79b3f-2749-4ffc-b50c-d9fe84f26e90
|
[6] |
LO Chiaming, LIN Minglang, TANG Chaolung, et al. A kinematic model of the Hsiaolin landslide calibrated to the morphology of the landslide deposit[J]. Engineering Geology, 2011, 123(1/2): 22-39. http://www.sciencedirect.com/science/article/pii/S0013795211001682
|
[7] |
周礼, 范宣梅, 许强, 等. 金沙江白格滑坡运动过程特征数值模拟与危险性预测研究[J]. 工程地质学报, 2019, 27(6): 1395-1404. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201906022.htm
ZHOU Li, FAN Xuanmei, XU Qiang, et al. Numerical simulation and hazard prediction on movement process characteristics of Baige landslide in Jinsha river[J]. Journal of Engineering Geology, 2019, 27(6): 1395-1404. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201906022.htm
|
[8] |
ZOU Zongxing, TANG Huiming, XIONG Chengren, et al. Kinetic characteristics of debris flows as exemplified by field investigations and discrete element simulation of the catastrophic Jiweishan rockslide, China[J]. Geomorphology, 2017, 295: 1-15. DOI: 10.1016/j.geomorph.2017.06.012
|
[9] |
LI Bin, XING Aiguo, XU Chong. Simulation of a long-runout rock avalanche triggered by the Lushan earthquake in the Tangjia Valley, Tianquan, Sichuan, China[J]. Engineering Geology, 2017, 218(29): 107-116. http://www.sciencedirect.com/science/article/pii/S0013795217300583
|
[10] |
GAO Ge, MEGUID M A. On the role of sphericity of falling rock clusters-insights from experimental and numerical investigations[J]. Landslides, 2018, 15(2): 219-232. DOI: 10.1007/s10346-017-0874-z
|
[11] |
BI Yuzhang, HE Siming, DU Yanjun, et al. Effects of the configuration of a baffle-avalanche wall system on rock avalanches in Tibet Zhangmu: Discrete element analysis[J]. Bulletin of Engineering Geology and the Environment, 2019, 78: 2267-2282. DOI: 10.1007/s10064-018-1284-8
|
[12] |
杨帆, 许强, 范宣梅, 等. 基于时间序列与人工蜂群支持向量机的滑坡位移预测研究[J]. 工程地质学报, 2019, 27(4): 880-889. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201904022.htm
YANG Fan, XU Qiang, FAN Xuanmei, et al. Prediction of landslide displacement time series based on support vector regression machine with Artificial Bee Colony algorithm[J]. Journal of Engineering Geology, 2019, 27(4): 880-889. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201904022.htm
|
[13] |
谭龙, 陈冠, 王思源, 等. 逻辑回归与支持向量机模型在滑坡敏感性评价中的应用[J]. 工程地质学报, 2014, 22(1): 56-63. DOI: 10.3969/j.issn.1004-9665.2014.01.008
TAN Long, CHEN Guan, WANG Siyuan, et al. Landslide susceptibility mapping based on Logistic Regression and Support Vector Machine[J]. Journal of Engineering Geology, 2014, 22(1): 56-63. DOI: 10.3969/j.issn.1004-9665.2014.01.008
|
[14] |
罗战友, 杨晓军, 龚晓南. 基于支持向量机的边坡稳定性预测模型[J]. 岩石力学与工程学报, 2005, 24(1): 144-148. DOI: 10.3321/j.issn:1000-6915.2005.01.024
LUO Zhanyou, YANG Xiaojun, GONG Xiaonan. Support Vector Machine model in slope stability evaluation[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(1): 144-148. DOI: 10.3321/j.issn:1000-6915.2005.01.024
|
[15] |
周超, 殷坤龙, 曹颖, 等. 基于诱发因素响应与支持向量机的阶跃式滑坡位移预测[J]. 岩石力学与工程学报, 2015, 34(增刊2): 4132-4139. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2015S2061.htm
ZHOU Chao, YIN Kunlong, CAO Ying, et al. Displacement prediction of step-like landslide based on the response of inducing factors and Support Vector Machine[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(Sup. 2): 4132-4139. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2015S2061.htm
|
[16] |
孙明志, 戴文亭, 孙思博, 等. 基于GA-SVM岩土参数反演的改进PBA工法研究[J]. 地下空间与工程学报, 2020, 16(4): 1163-1171. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE202004025.htm
SUN Mingzhi, DAI Wenting, SUN Sibo, et al. Research on the improvement of PBA construction method based on GA-SVM[J]. Chinese Journal of Underground Space and Engineering, 2020, 16(4): 1163-1171. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE202004025.htm
|
[17] |
MA Siyuan, XU Chong, SHAO Xiaoyi, et al. Geometric and kinematic features of a landslide in Mabian Sichuan, China, derived from UAV photography[J]. Landslides, 2018, 16(2): 373-381. DOI: 10.1007/s10346-018-1104-z
|
[18] |
曹文, 李维朝, 唐斌, 等. PFC滑坡模拟二、三维建模方法研究[J]. 工程地质学报, 2017, 25(2): 455-462. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201702024.htm
CAO Wen, LI Weichao, TANG Bin, et al. PFC study on building of 2D and 3D landslide models[J]. Journal of Engineering Geology, 2017, 25(2): 455-462. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201702024.htm
|
[19] |
WEI Jiangbo, ZHAO Zhou, XU Chong, et al. Numerical investigation of landslide kinetics for the recent Mabian landslide(Sichuan, China)[J]. Landslides, 2019, 16(11): 2287-2298. DOI: 10.1007/s10346-019-01237-0
|
[20] |
SCHEIDEGGER A E. On the prediction of the reach and velocity of catastrophic landslides: 2F, 1T, 14R. ROCK MECHANICS, V5, N4, 1973, P231-236[J]. International Journal of Rock Mechanics & Mining Sciences & Geomechanics Abstracts, 1974, 11(3): 65. http://www.sciencedirect.com/science/article/pii/0148906274917094
|
[21] |
吴越, 刘东升, 李明军. 岩体滑坡冲击能计算及受灾体易损性定量评估[J]. 岩石力学与工程学报, 2011, 30(5): 901-909. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201105006.htm
WU Yue, LIU Dongsheng, LI Mingjun. Impact energy calculation for rock slope and quantitative assessment of vulnerability for element at risk[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(5): 901-909. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201105006.htm
|
[22] |
张志东, 樊晓一, 姜元俊. 岩土体颗粒级配对滑坡碎屑流冲击力力链特征的影响[J]. 山地学报, 2020, 38(3): 402-415. https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA202003009.htm
ZHANG Zhidong, FAN Xiaoyi, JIANG Yuanjun. Effect of granularity of rock and soil mass on regularity of impact force chain in a fluidized landslide[J]. Mountain Research, 2020, 38(3): 402-415. https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA202003009.htm
|
[1] | WANG Siyi, LI Quanxin, LIU Jianlin, ZHAO Jiangpeng, YANG Dongdong. Development of impact screw motor[J]. COAL GEOLOGY & EXPLORATION, 2019, 47(5): 225-231. DOI: 10.3969/j.issn.1001-1986.2019.05.032 |
[2] | CHEN Da, XUE Xicheng, WEI Jiangbo. Simulation of failure process of Liujian landslide based on PFC2D[J]. COAL GEOLOGY & EXPLORATION, 2018, 46(4): 115-121. DOI: 10.3969/j.issn.1001-1986.2018.04.019 |
[3] | ZHANG Wei, HUANG Kaizhao, LU Chunhua. Study on the working mechanism and design of a new type of gravity impact hammer[J]. COAL GEOLOGY & EXPLORATION, 2017, 45(6): 176-181. DOI: 10.3969/j.issn.1001-1986.2017.06.029 |
[4] | ZHAO Zhou, WEI Jiangbo. Simulation on the movement process of accumulated layer landslide based on PFC2D[J]. COAL GEOLOGY & EXPLORATION, 2017, 45(6): 111-116,122. DOI: 10.3969/j.issn.1001-1986.2017.06.018 |
[5] | TANG Shengli, YANG Liang, SUN Lihai. ANSYS-based analysis on stress field and stress intensity factor of brazing seam in PDC bits[J]. COAL GEOLOGY & EXPLORATION, 2015, 43(1): 104-108. DOI: 10.3969/j.issn.1001-1986.2015.01.022 |
[6] | ZHAO Da-jun, WU Xiao-han, XU Long-xian, YU Ping, JI Sheng-li. Analysis and research on accessories intensity of DTH hammer drilling with concentric simultaneous casing[J]. COAL GEOLOGY & EXPLORATION, 2006, 34(1): 79-80. |
[7] | ZHENG Shu-yan, LI Zhan-bin, XUE Xiao-jie. Intensive zoning of landslide erosion disaster in Tongchuan City,Shaanxi[J]. COAL GEOLOGY & EXPLORATION, 2004, 32(4): 36-39. |
[8] | YE Dao-min. The relationship between fluorenscence intensity of vitrinite and petrographic parameters of coal[J]. COAL GEOLOGY & EXPLORATION, 2004, 32(1): 4-5. |
[9] | ZHAN Jun, YIN Kun, YU Qing-yang, CENG Jian-hua. Research on the last impacting velocity of the piston of pneumatic DTH hammer by FEM[J]. COAL GEOLOGY & EXPLORATION, 2003, 31(6): 58-60. |
[10] | ZHAO Xu-sheng, WANG Shan-hai. Application of artificial neural network to forecast of intensity of coal and gas outburst in mine[J]. COAL GEOLOGY & EXPLORATION, 2002, 30(2): 23-25. |