CHEN Xing, ZHAO Zhou, WEI Jiangbo, XU Chong. Numerical study of Mabian landslide kinematics and impact intensity[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(4): 234-241. DOI: 10.3969/j.issn.1001-1986.2021.04.028
Citation: CHEN Xing, ZHAO Zhou, WEI Jiangbo, XU Chong. Numerical study of Mabian landslide kinematics and impact intensity[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(4): 234-241. DOI: 10.3969/j.issn.1001-1986.2021.04.028

Numerical study of Mabian landslide kinematics and impact intensity

More Information
  • Received Date: January 30, 2021
  • Revised Date: June 08, 2021
  • Available Online: September 09, 2021
  • Published Date: August 24, 2021
  • study of landslide kinematics and impact intensity is of great significance for quantitative assessment of landslide risk. In this paper, the basic characteristics of Mabian landslide(occurred on May 5, 2018) in Leshan City, Sichuan Province were investigated. The support vector machine(SVM) model and particle flow method(PFC) were used to calibrate the meso-strength parameters of landslide rock and soil. Combined with the UAV data, the high-precision DEM of landslide area was generated. On this basis, the three-dimensional PFC model of Mabian landslide was reconstructed and simulated. The movement, accumulation and impact process of landslide are studied. The results show that: the movement of Mabian landslide lasted 32 seconds, main sliding time is 16 seconds, and the peak velocity is 10.2 m/s after 5 seconds; the movement trace of rock and soil in the middle and rear of the landslide is linear, while the middle and front of the landslide is in a diffusion state, and finally in a fan-shaped accumulation; the impact force of the landslide at the slope foot can reach 1.5×109 N, and the impact force presents the exponential attenuation characteristics with the increase of the movement distance. The results are basically consistent with the actual video interpretation results of landslide movement and accumulation, and the related research methods could provide references for quantitative risk assessment of landslide.
  • [1]
    胡晓波, 樊晓一, 唐俊杰. 基于离散元的高速远程滑坡运动堆积特征及能量转化研究: 以三溪村滑坡为例[J]. 地质力学学报, 2019, 25(4): 527-535. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX201904009.htm

    HU Xiaobo, FAN Xiaoyi, TANG Junjie. Accumulation characteristics and energy conversion of high-speed and long-distance landslide on the basis of DEM: A case study of Sanxicun landslide[J]. Journal of Geomechanics, 2019, 25(4): 527-535. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX201904009.htm
    [2]
    LO Chiaming, LEE Chingfang, HUANG Weikai. Failure mechanism analysis of rainfall-induced landslide at Pingguang stream in Taiwan: Mapping, investigation, and numerical simulation[J]. Environmental Earth Sciences, 2016, 75(21): 1-20.
    [3]
    SHI Chong, LI Dejie, CHEN Kaihua, et al. Failure mechanism and stability analysis of the Zhenggang landslide in Yunnan Province of China using 3D particle flow code simulation[J]. Journal of Mountain Science, 2016, 13(5): 891-905. DOI: 10.1007/s11629-014-3399-0
    [4]
    TANG Chaolung, HU Jyrching, LIN Minglang, et al. The Tsaoling landslide triggered by the Chi-Chi earthquake, Taiwan: Insights from a discrete element simulation[J]. Engineering Geology, 2009, 106(1/2): 1-19. http://www.sciencedirect.com/science/article/pii/S0013795209000489
    [5]
    陈达, 薛喜成, 魏江波. 基于PFC2D的刘涧滑坡破坏运动过程模拟[J]. 煤田地质与勘探, 2018, 46(4): 115-121. http://mdkt.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=6bf79b3f-2749-4ffc-b50c-d9fe84f26e90

    CHEN Da, XUE Xicheng, WEI Jiangbo. Simulation of failure process of Liujian landslide based on PFC2D[J]. Coal Geology & Exploration, 2018, 46(4): 115-121. http://mdkt.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=6bf79b3f-2749-4ffc-b50c-d9fe84f26e90
    [6]
    LO Chiaming, LIN Minglang, TANG Chaolung, et al. A kinematic model of the Hsiaolin landslide calibrated to the morphology of the landslide deposit[J]. Engineering Geology, 2011, 123(1/2): 22-39. http://www.sciencedirect.com/science/article/pii/S0013795211001682
    [7]
    周礼, 范宣梅, 许强, 等. 金沙江白格滑坡运动过程特征数值模拟与危险性预测研究[J]. 工程地质学报, 2019, 27(6): 1395-1404. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201906022.htm

    ZHOU Li, FAN Xuanmei, XU Qiang, et al. Numerical simulation and hazard prediction on movement process characteristics of Baige landslide in Jinsha river[J]. Journal of Engineering Geology, 2019, 27(6): 1395-1404. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201906022.htm
    [8]
    ZOU Zongxing, TANG Huiming, XIONG Chengren, et al. Kinetic characteristics of debris flows as exemplified by field investigations and discrete element simulation of the catastrophic Jiweishan rockslide, China[J]. Geomorphology, 2017, 295: 1-15. DOI: 10.1016/j.geomorph.2017.06.012
    [9]
    LI Bin, XING Aiguo, XU Chong. Simulation of a long-runout rock avalanche triggered by the Lushan earthquake in the Tangjia Valley, Tianquan, Sichuan, China[J]. Engineering Geology, 2017, 218(29): 107-116. http://www.sciencedirect.com/science/article/pii/S0013795217300583
    [10]
    GAO Ge, MEGUID M A. On the role of sphericity of falling rock clusters-insights from experimental and numerical investigations[J]. Landslides, 2018, 15(2): 219-232. DOI: 10.1007/s10346-017-0874-z
    [11]
    BI Yuzhang, HE Siming, DU Yanjun, et al. Effects of the configuration of a baffle-avalanche wall system on rock avalanches in Tibet Zhangmu: Discrete element analysis[J]. Bulletin of Engineering Geology and the Environment, 2019, 78: 2267-2282. DOI: 10.1007/s10064-018-1284-8
    [12]
    杨帆, 许强, 范宣梅, 等. 基于时间序列与人工蜂群支持向量机的滑坡位移预测研究[J]. 工程地质学报, 2019, 27(4): 880-889. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201904022.htm

    YANG Fan, XU Qiang, FAN Xuanmei, et al. Prediction of landslide displacement time series based on support vector regression machine with Artificial Bee Colony algorithm[J]. Journal of Engineering Geology, 2019, 27(4): 880-889. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201904022.htm
    [13]
    谭龙, 陈冠, 王思源, 等. 逻辑回归与支持向量机模型在滑坡敏感性评价中的应用[J]. 工程地质学报, 2014, 22(1): 56-63. DOI: 10.3969/j.issn.1004-9665.2014.01.008

    TAN Long, CHEN Guan, WANG Siyuan, et al. Landslide susceptibility mapping based on Logistic Regression and Support Vector Machine[J]. Journal of Engineering Geology, 2014, 22(1): 56-63. DOI: 10.3969/j.issn.1004-9665.2014.01.008
    [14]
    罗战友, 杨晓军, 龚晓南. 基于支持向量机的边坡稳定性预测模型[J]. 岩石力学与工程学报, 2005, 24(1): 144-148. DOI: 10.3321/j.issn:1000-6915.2005.01.024

    LUO Zhanyou, YANG Xiaojun, GONG Xiaonan. Support Vector Machine model in slope stability evaluation[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(1): 144-148. DOI: 10.3321/j.issn:1000-6915.2005.01.024
    [15]
    周超, 殷坤龙, 曹颖, 等. 基于诱发因素响应与支持向量机的阶跃式滑坡位移预测[J]. 岩石力学与工程学报, 2015, 34(增刊2): 4132-4139. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2015S2061.htm

    ZHOU Chao, YIN Kunlong, CAO Ying, et al. Displacement prediction of step-like landslide based on the response of inducing factors and Support Vector Machine[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(Sup. 2): 4132-4139. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2015S2061.htm
    [16]
    孙明志, 戴文亭, 孙思博, 等. 基于GA-SVM岩土参数反演的改进PBA工法研究[J]. 地下空间与工程学报, 2020, 16(4): 1163-1171. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE202004025.htm

    SUN Mingzhi, DAI Wenting, SUN Sibo, et al. Research on the improvement of PBA construction method based on GA-SVM[J]. Chinese Journal of Underground Space and Engineering, 2020, 16(4): 1163-1171. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE202004025.htm
    [17]
    MA Siyuan, XU Chong, SHAO Xiaoyi, et al. Geometric and kinematic features of a landslide in Mabian Sichuan, China, derived from UAV photography[J]. Landslides, 2018, 16(2): 373-381. DOI: 10.1007/s10346-018-1104-z
    [18]
    曹文, 李维朝, 唐斌, 等. PFC滑坡模拟二、三维建模方法研究[J]. 工程地质学报, 2017, 25(2): 455-462. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201702024.htm

    CAO Wen, LI Weichao, TANG Bin, et al. PFC study on building of 2D and 3D landslide models[J]. Journal of Engineering Geology, 2017, 25(2): 455-462. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201702024.htm
    [19]
    WEI Jiangbo, ZHAO Zhou, XU Chong, et al. Numerical investigation of landslide kinetics for the recent Mabian landslide(Sichuan, China)[J]. Landslides, 2019, 16(11): 2287-2298. DOI: 10.1007/s10346-019-01237-0
    [20]
    SCHEIDEGGER A E. On the prediction of the reach and velocity of catastrophic landslides: 2F, 1T, 14R. ROCK MECHANICS, V5, N4, 1973, P231-236[J]. International Journal of Rock Mechanics & Mining Sciences & Geomechanics Abstracts, 1974, 11(3): 65. http://www.sciencedirect.com/science/article/pii/0148906274917094
    [21]
    吴越, 刘东升, 李明军. 岩体滑坡冲击能计算及受灾体易损性定量评估[J]. 岩石力学与工程学报, 2011, 30(5): 901-909. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201105006.htm

    WU Yue, LIU Dongsheng, LI Mingjun. Impact energy calculation for rock slope and quantitative assessment of vulnerability for element at risk[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(5): 901-909. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201105006.htm
    [22]
    张志东, 樊晓一, 姜元俊. 岩土体颗粒级配对滑坡碎屑流冲击力力链特征的影响[J]. 山地学报, 2020, 38(3): 402-415. https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA202003009.htm

    ZHANG Zhidong, FAN Xiaoyi, JIANG Yuanjun. Effect of granularity of rock and soil mass on regularity of impact force chain in a fluidized landslide[J]. Mountain Research, 2020, 38(3): 402-415. https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA202003009.htm
  • Related Articles

    [1]WANG Siyi, LI Quanxin, LIU Jianlin, ZHAO Jiangpeng, YANG Dongdong. Development of impact screw motor[J]. COAL GEOLOGY & EXPLORATION, 2019, 47(5): 225-231. DOI: 10.3969/j.issn.1001-1986.2019.05.032
    [2]CHEN Da, XUE Xicheng, WEI Jiangbo. Simulation of failure process of Liujian landslide based on PFC2D[J]. COAL GEOLOGY & EXPLORATION, 2018, 46(4): 115-121. DOI: 10.3969/j.issn.1001-1986.2018.04.019
    [3]ZHANG Wei, HUANG Kaizhao, LU Chunhua. Study on the working mechanism and design of a new type of gravity impact hammer[J]. COAL GEOLOGY & EXPLORATION, 2017, 45(6): 176-181. DOI: 10.3969/j.issn.1001-1986.2017.06.029
    [4]ZHAO Zhou, WEI Jiangbo. Simulation on the movement process of accumulated layer landslide based on PFC2D[J]. COAL GEOLOGY & EXPLORATION, 2017, 45(6): 111-116,122. DOI: 10.3969/j.issn.1001-1986.2017.06.018
    [5]TANG Shengli, YANG Liang, SUN Lihai. ANSYS-based analysis on stress field and stress intensity factor of brazing seam in PDC bits[J]. COAL GEOLOGY & EXPLORATION, 2015, 43(1): 104-108. DOI: 10.3969/j.issn.1001-1986.2015.01.022
    [6]ZHAO Da-jun, WU Xiao-han, XU Long-xian, YU Ping, JI Sheng-li. Analysis and research on accessories intensity of DTH hammer drilling with concentric simultaneous casing[J]. COAL GEOLOGY & EXPLORATION, 2006, 34(1): 79-80.
    [7]ZHENG Shu-yan, LI Zhan-bin, XUE Xiao-jie. Intensive zoning of landslide erosion disaster in Tongchuan City,Shaanxi[J]. COAL GEOLOGY & EXPLORATION, 2004, 32(4): 36-39.
    [8]YE Dao-min. The relationship between fluorenscence intensity of vitrinite and petrographic parameters of coal[J]. COAL GEOLOGY & EXPLORATION, 2004, 32(1): 4-5.
    [9]ZHAN Jun, YIN Kun, YU Qing-yang, CENG Jian-hua. Research on the last impacting velocity of the piston of pneumatic DTH hammer by FEM[J]. COAL GEOLOGY & EXPLORATION, 2003, 31(6): 58-60.
    [10]ZHAO Xu-sheng, WANG Shan-hai. Application of artificial neural network to forecast of intensity of coal and gas outburst in mine[J]. COAL GEOLOGY & EXPLORATION, 2002, 30(2): 23-25.

Catalog

    Article Metrics

    Article views (243) PDF downloads (13) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return