CAO Jian, HUANG Qingxiang. Regularity and control of overburden and surface fractures in shallow-contiguous seams[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(4): 213-220. DOI: 10.3969/j.issn.1001-1986.2021.04.026
Citation: CAO Jian, HUANG Qingxiang. Regularity and control of overburden and surface fractures in shallow-contiguous seams[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(4): 213-220. DOI: 10.3969/j.issn.1001-1986.2021.04.026

Regularity and control of overburden and surface fractures in shallow-contiguous seams

More Information
  • Received Date: December 13, 2020
  • Revised Date: April 29, 2021
  • Available Online: September 09, 2021
  • Published Date: August 24, 2021
  • The Shenfu-Dongsheng Coalfield in western country mainly occurs in shallow close multi-seam, and the thick loose layers on the overlying rock are distributed in a wide range. Mining in shallow-contiguous seams results in serious development of overlying rock and surface fractures, which aggravates the deterioration of the originally fragile ecological environment. In order to explore the mining-induced overburden and surface fractures development characteristics in shallow shallow-contiguous seams, and obtain its control method. Taking No.1-2 seam and No.2-2 seam mining in Ningtiaota Coal Mine as background, this paper obtains the development characteristics of fractures in shallow single seam mining and repeated mining through in-site statistic analysis, physical simulation and fractal theory. Besides, the control effect of pillar staggered distance to mining-induced fractures is revealed. The results show that the mining-induced surface fractures can be divided into two types, one is dynamic fractures which are parallel to the working face, and another is mining boundary surface fractures which contain open-off boundary surface fractures and pillar boundary surface fractures. The dynamic fractures can realize self-repairing after mining, while the mining boundary surface fractures can not realize self-repairing. After lower seam mining, the pillar boundary overburden and surface fractures development seriously, which are closely related to pillar staggered distance. After No.1-2 seam mining, the bedrock caving angle is 60°, and the soil layer caving angle is 65°, the width of surface fracture along coal pillar, 0.26 m. After lower No.2-2 seam mining, when the pillars are aligned, with pillar staggered distance of 20 m and 40 m, the width of overburden fractures are 0.81 m, 0.45 m and 0.22 m respectively, and the width of surface fractures are 0.65 m, 0.30 m and 0.12 m. Through determining the reasonable pillar staggered distance, development of the overburden and surface fractures can be controlled effectively. Finally, the reasonable pillar staggered distance should be greater than 40m in No.1-2 and No.2-2 seams mining in Ningtiaota Coal Mine.
  • [1]
    黄庆享, 曹健, 杜君武, 等. 浅埋近距煤层开采三场演化规律与合理煤柱错距研究[J]. 煤炭学报, 2019, 44(3): 681-689. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201903004.htm

    HUANG Qingxiang, CAO Jian, DU Junwu, et al. Research on three-field evolution and rational coal pillar staggered distance in shallow buried closely spaced multi-seam mining[J]. Journal of China Coal Society, 2019, 44(3): 681-689. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201903004.htm
    [2]
    姚邦华, 周海峰, 陈龙. 重复采动下覆岩裂隙发育规律模拟研究[J]. 采矿与安全工程学报, 2010, 27(3): 443-446. DOI: 10.3969/j.issn.1673-3363.2010.03.029

    YAO Banghua, ZHOU Haifeng, CHEN Long. Numerical simulation about fracture development in overlying rocks under repeated mining[J]. Journal of Mining & Safety Engineering, 2010, 27(3): 443-446. DOI: 10.3969/j.issn.1673-3363.2010.03.029
    [3]
    王文学, 隋旺华, 董青红, 等. 松散层下覆岩裂隙采后闭合效应及重复开采覆岩破坏预测[J]. 煤炭学报, 2013, 38(10): 1728-1734. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201310003.htm

    WANG Wenxue, SUI Wanghua, DONG Qinghong, et al. Closure effect of mining-induced fractures under sand aquifers and prediction of overburden failure due to re-mining[J]. Journal of China Coal Society, 2013, 38(10): 1728-1734. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201310003.htm
    [4]
    余明高, 滕飞, 褚廷湘, 等. 浅埋煤层重复采动覆岩裂隙及漏风通道演化模拟研究[J]. 河南理工大学学报(自然科学版), 2018, 37(1): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-JGXB201801001.htm

    YU Minggao, TENG Fei, CHU Tingxiang, et al. Simulation study on the evolution of the overlying strata fractures and air-leaking passage under repeated mining of shallow buried coal seams[J]. Journal of Henan Polytechnic University(Natural Science), 2018, 37(1): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-JGXB201801001.htm
    [5]
    黄庆享, 杜君武, 侯恩科, 等. 浅埋煤层群覆岩与地表裂隙发育规律和形成机理研究[J]. 采矿与安全工程学报, 2019, 36(1): 7-15. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201901002.htm

    HUANG Qingxiang, DU Junwu, HOU Enke, et al. Research on overburden and ground surface cracks distribution and formation mechanism in shallow coal seams group mining[J]. Journal of Mining & Safety Engineering, 2019, 36(1): 7-15. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201901002.htm
    [6]
    张春雷, 李占平, 康强. 近距煤层群不同层间岩层结构下围岩裂隙演化规律[J]. 煤矿安全, 2018, 49(9): 91-95. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ201809021.htm

    ZHANG Chunlei, LI Zhanping, KANG Qiang. Fracture evolution laws of surrounding rock under different strata rock structures in short distance coal seam group[J]. Safety in Coal Mines, 2018, 49(9): 91-95. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ201809021.htm
    [7]
    李树刚, 丁洋, 安朝峰, 等. 近距离煤层重复采动覆岩裂隙形态及其演化规律实验研究[J]. 采矿与安全工程学报, 2016, 33(5): 904-910. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201605022.htm

    LI Shugang, DING Yang, AN Zhaofeng, et al. Experimental research on the shape and dynamic evolution of repeated mining-induced fractures in short-distance coal seams[J]. Journal of Mining & Safety Engineering, 2016, 33(5): 904-910. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201605022.htm
    [8]
    文虎, 于志金, 翟小伟, 等. 叠加开采下浅埋煤层裂隙演化与连通特征[J]. 煤矿安全, 2015, 46(12): 46-49. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ201512013.htm

    WEN Hu, YU Zhijin, ZHAI Xiaowei, et al. Crack development and interconnected characteristics of closely spaced shallow coal seams under overlapping mining[J]. Safety in Coal Mines, 2015, 46(12): 46-49. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ201512013.htm
    [9]
    刘腾飞. 煤矿开采导水裂缝发育高度及影响因素分析[J]. 煤田地质与勘探, 2013, 41(3): 34-37. http://mdkt.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=7e33d6e3-63c5-4690-8fdf-ac5d72bfba4e

    LIU Tengfei. Height of water-conducting crack and its influence factors in coal mine[J]. Coal Geology & Exploration, 2013, 41(3): 34-37. http://mdkt.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=7e33d6e3-63c5-4690-8fdf-ac5d72bfba4e
    [10]
    白海波. 徐州矿区地裂缝成因机制的探讨[J]. 煤田地质与勘探, 2002, 30(2): 46-48. http://mdkt.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=702dfa30-5ae7-4ec6-bd27-76dff73bc9e9

    BAI Haibo. Research on formation mechanism of earth fissure in Xuzhou coal mining area[J]. Coal Geology & Exploration, 2002, 30(2): 46-48. http://mdkt.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=702dfa30-5ae7-4ec6-bd27-76dff73bc9e9
    [11]
    王晖, 李智毅, 杨为民, 等. 松散黄土堆积层下煤矿采空区地表塌陷形成机理[J]. 现代地质, 2008, 22(5): 877-883. DOI: 10.3969/j.issn.1000-8527.2008.05.025

    WANG Hui, LI Zhiyi, YANG Weimin, et al. Formation mechanism of the ground collapse in mined-out area of coal mine underlying loose loess deposit[J]. Geoscience, 2008, 22(5): 877-883. DOI: 10.3969/j.issn.1000-8527.2008.05.025
    [12]
    王军, 赵欢欢, 刘晶歌. 薄基岩浅埋煤层工作面地表动态移动规律研究[J]. 矿业安全与环保, 2016, 43(1): 21-25. https://www.cnki.com.cn/Article/CJFDTOTAL-ENER201601006.htm

    WANG Jun, ZHAO Huanhuan, LIU Jingge. Study on dynamic law of surface movement above working face of shallow-buried coal seam with thin bedrock[J]. Mining Safety & Environmental Protection, 2016, 43(1): 21-25. https://www.cnki.com.cn/Article/CJFDTOTAL-ENER201601006.htm
    [13]
    李建伟. 西部浅埋厚煤层高强度开采覆岩导气裂缝的时空演化机理及控制研究[D]. 徐州: 中国矿业大学, 2017.

    LI Jianwei. Spatial-temporal evolution mechanism and control technology of air leakage fissures in high-intensity mining of shallow thick coal seam[D]. Xuzhou: China University of Mining and Technology, 2017.
    [14]
    刘辉. 西部黄土沟壑区采动地裂缝发育规律及治理技术研究[D]. 徐州: 中国矿业大学, 2014.

    LIU Hui. The development law and treatment technology of ground fissures due to underground mining in loess hilly area of western China[D]. Xuzhou: China University of Mining and Technology, 2014.
    [15]
    李圣军. 哈拉沟煤矿高强度开采覆岩与地表破坏特征研究[D]. 焦作: 河南理工大学, 2015.

    LI Shengjun. Research on overburden strata and surface failure characteristics with high intensity mining in Halagou coal mine[D]. Jiaozuo: Henan Polytechnic University, 2015.
    [16]
    李琛. 近水平煤层采动边界裂缝导水性研究[D]. 廊坊: 华北科技学院, 2016.

    LI Chen. The research for hydraulic conductivity of mining boundary fracture in nearly horizontal coal mine seam[D]. Langfang: North China Institute of Science and Technology, 2016.
    [17]
    胡振琪, 王新静, 贺安民. 风积沙区采煤沉陷地裂缝分布特征与发生发育规律[J]. 煤炭学报, 2014, 39(1): 11-18. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201401002.htm

    HU Zhenqi, WANG Xinjing, HE Anmin. Distribution characteristic and development rules of ground fissures due to coal mining in windy and sandy region[J]. Journal of China Coal Society, 2014, 39(1): 11-18. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201401002.htm
    [18]
    王业显. 大柳塔矿重复采动条件下地表沉陷规律研究[D]. 徐州: 中国矿业大学, 2014.

    WANG Yexian. Study on regularity of surface subsidence due to repeated mining taking Daliuta coal mine as example[D]. Xuzhou: China University of Mining and Technology, 2014.
    [19]
    赵万库. 韩城矿区多煤层重复开采致灾规律研究[D]. 西安: 西安科技大学, 2018.

    ZHAO Wanku. Study on the regularity of disasters caused by repeated mining of multiple coal seams in Hancheng mining area[D]. Xi'an: Xi'an University of Science and Technology, 2018.
    [20]
    谢和平, 于广明, 杨伦, 等. 采动岩体分形裂隙网络研究[J]. 岩石力学与工程学报, 1999, 18(2): 147-151. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX902.006.htm

    XIE Heping, YU Guangming, YANG Lun, et al. Research on the fractal effects of crack network in overburden rock stratum[J]. Chinese Journal of Rock Mechanics and Engineering, 1999, 18(2): 147-151. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX902.006.htm
    [21]
    张向东, 徐峥嵘, 苏仲杰, 等. 采动岩体分形裂隙网络计算机模拟研究[J]. 岩石力学与工程学报, 2001, 20(6): 809-812. DOI: 10.3321/j.issn:1000-6915.2001.06.012

    ZHANG Xiangdong, XU Zhengrong, SU Zhongjie, et al. Research of the imitation about the fractal crack in overburden rock stratum by computer[J]. Chinese Journal of Rock Mechanics and Engineering, 2001, 20(6): 809-812. DOI: 10.3321/j.issn:1000-6915.2001.06.012
    [22]
    张永波, 李荣华, 刘秀英. 采动岩体分形裂隙网络演化规律的试验研究[J]. 工程勘察, 2004(2): 33-35. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC200402009.htm

    ZHANG Yongbo, LI Ronghua, LIU Xiuying. Experiment research of the evolvement laws for the crack network of rocks[J]. Geotechnical Investigation & Surveying, 2004(2): 33-35. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC200402009.htm
  • Related Articles

    [1]FANG Hongwei, WU Jianxun, HOU Zhenkun. A new instability criterion of double strength reduction method for slope[J]. COAL GEOLOGY & EXPLORATION, 2019, 47(5): 173-178. DOI: 10.3969/j.issn.1001-1986.2019.05.024
    [2]TIAN Yanzhe. Hoek-Brown criterion-based modification of the mechanical parameters of rock mass of open pit slope under freezing-thawing cycle[J]. COAL GEOLOGY & EXPLORATION, 2018, 46(6): 150-156. DOI: 10.3969/j.issn.1001-1986.2018.06.022
    [3]LIU Xiaoping. Application of instability criteria of mined-out areas based on catastrophe theory[J]. COAL GEOLOGY & EXPLORATION, 2014, 42(4): 55-58. DOI: 10.3969/j.issn.1001-1986.2014.04.012
    [4]ZHU Zhiming, ZHANG Guangcheng, ZHU Jiaoyan, LU Hui. Research on equivalent strength rock mass based on generalized Hoek-Brown failure criterion[J]. COAL GEOLOGY & EXPLORATION, 2012, 40(4): 52-55. DOI: 10.3969/j.issn.1001-1986.2012.04.012
    [5]XU Chong, HUANG Hui. Design and realization of mining subsidence prediction system based on the probability integral model[J]. COAL GEOLOGY & EXPLORATION, 2012, 40(3): 59-61,65. DOI: 10.3969/j.issn.1001-1986.2012.03.014
    [6]WU Xueming, WU Yongping, ZHANG Jianhua. Local instability mechanism and countermeasures for inclined-shaft with water-abundant soft rock[J]. COAL GEOLOGY & EXPLORATION, 2010, 38(6): 48-53. DOI: 10.3969/j.issn.1001-1986.2010.06.010
    [7]MOU Sheng-yuan, WANG Zheng-zhong. Hoek-Brown failure criterion superiority for rocky slop stability analysis[J]. COAL GEOLOGY & EXPLORATION, 2009, 37(3): 53-56. DOI: 10.3969/j.issn.1001-1986.2009.03.013
    [8]XU Ling-zhou, GUAN Ji-teng, FANG Wen-jing. Study on underground sphere’s orientation by probability tomography[J]. COAL GEOLOGY & EXPLORATION, 2004, 32(2): 54-56.
    [9]LÜ Wen-jun, HU Guo-xiang. Analysis on the stability of the landslide based on the failure probability[J]. COAL GEOLOGY & EXPLORATION, 2004, 32(1): 34-36.
    [10]Wang Baogui. THE DETECTION OF SMALL FAULTS USING FUZZY PROBABILITY METHOD AND ITS APPLICATION IN LONGDONG AREA[J]. COAL GEOLOGY & EXPLORATION, 1999, 27(S1): 51-54.

Catalog

    Article Metrics

    Article views (217) PDF downloads (28) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return