TIAN Yutong, ZHANG Pingsong, WU Rongxin, LIU Chang. Research status and prospect of fault activation under coal mining conditions[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(4): 60-70. DOI: 10.3969/j.issn.1001-1986.2021.04.008
Citation: TIAN Yutong, ZHANG Pingsong, WU Rongxin, LIU Chang. Research status and prospect of fault activation under coal mining conditions[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(4): 60-70. DOI: 10.3969/j.issn.1001-1986.2021.04.008

Research status and prospect of fault activation under coal mining conditions

More Information
  • Received Date: November 19, 2020
  • Revised Date: April 25, 2021
  • Available Online: September 09, 2021
  • Published Date: August 24, 2021
  • Fault activation under mining conditions is easy to induce dynamic geological disasters such as rock burst and floor water inrush. How to carry out advanced prevention and early warning for a series of dynamic geological disasters caused by the activation of stope faults has always been a scientific and technical problem faced by coal mine safety mining. This paper summarizes the research status of stope fault activation at home and abroad from three aspects of numerical simulation, similar physical simulation and field test. Focusing on the monitoring and early warning methods of fault activation, including microseismic monitoring technology, acoustic emission technology, apparent resistivity monitoring technology, optical fiber sensing technology, water injection test, etc., the main existing testing and evaluation methods are summarized from the aspects of method principle, research status, technical characteristics and so on. Combined with the current coal mining in complex fault areas in China, the formation mechanism and internal relationship of several typical dynamic geological disasters induced by fault activation are analyzed. At present, the research on multi-dimensional and multi-scale whole process fine monitoring technology of fault activation induced by mining is still insufficient. Based on the requirements of precision and intelligence of coal mining, it is pointed out that the research on coal mining in complex fault area should develop in the direction of multi field coupling, fine model construction, multi means comprehensive exploration, intelligent early warning, etc. It is considered that further research on the basic theory of fault activation, fine simulation, multi-dimensional multi field multi-scale monitoring and early warning technology system can provide a solid foundation for the mine geological guarantee work under the guidance of intelligent coal mine.
  • [1]
    孟召平, 彭苏萍, 冯玉, 等. 断裂结构面对回采工作面矿压及顶板稳定性的影响[J]. 煤田地质与勘探, 2006, 34(3): 24-27. DOI: 10.3969/j.issn.1001-1986.2006.03.007

    MENG Zhaoping, PENG Suping, FENG Yu, et al. Influence of fracture structure plane on underground pressure and roof stability of working face[J]. Coal Geology & Exploration, 2006, 34(3): 24-27. DOI: 10.3969/j.issn.1001-1986.2006.03.007
    [2]
    王存文, 姜福兴, 刘金海. 构造对冲击地压的控制作用及案例分析[J]. 煤炭学报, 2012, 37(增刊2): 263-268. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB2012S2002.htm

    WANG Cunwen, JIANG Fuxing, LIU Jinhai. Analysis on control action of geologic structure on rock burst and typical cases[J]. Journal of China Coal Society, 2012, 37(Sup. 2): 263-268. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB2012S2002.htm
    [3]
    左建平, 陈忠辉, 王怀文, 等. 深部煤矿采动诱发断层活动规律[J]. 煤炭学报, 2009, 34(3): 305-309. DOI: 10.3321/j.issn:0253-9993.2009.03.004

    ZUO Jianping, CHEN Zhonghui, WANG Huaiwen, et al. Experimental investigation on fault activation pattern under deep mining[J]. Journal of China Coal Society, 2009, 34(3): 305-309. DOI: 10.3321/j.issn:0253-9993.2009.03.004
    [4]
    罗浩, 李忠华, 王爱文, 等. 深部开采临近断层应力场演化规律研究[J]. 煤炭学报, 2014, 39(2): 322-327. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201402018.htm

    LUO Hao, LI Zhonghua, WANG Aiwen, et al. Study on the evolution law of stress field when approaching fault in deep mining[J]. Journal of China Coal Society, 2014, 39(2): 322-327. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201402018.htm
    [5]
    黎良杰, 钱鸣高, 李树刚. 断层突水机理分析[J]. 煤炭学报, 1996, 21(2): 119-123. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB602.001.htm

    LI Liangjie, QIAN Minggao, LI Shugang. Mechanism of water-inrush through fault[J]. Journal of China Coal Society, 1996, 21(2): 119-123. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB602.001.htm
    [6]
    吉煤集团辽矿公司龙家堡煤矿"6·9"较大冲击地压事故剖析[N]. 中国煤炭报, 2020-06-02(003).

    Analysis of "6·9" big rock burst accident in Longjiabao coal mine of Liaoning mining company of Jilin coal group[N]. China Coal News, 2020-06-02(003).
    [7]
    山西长治襄矿西故县煤业"10·25"较大水害事故剖析[N]. 中国煤炭报, 2020-05-16(004).

    Analysis of the "10·25" major water disaster accident in Xigu County of Changzhi Xiangtan Coal Mine, Shanxi Province[N]. China Coal News, 2020-05-16(004).
    [8]
    四川省川南煤业泸州古叙煤电有限公司石屏一矿"10·26"较大顶板事故案例[N]. 中国煤炭报, 2021-02-09(003).

    A case of "10·26" large roof accident in Shiping No. 1 Coal Mine of Luzhou Guxu Coal Power Co., Ltd., southern Sichuan Coal Industry[N]. China Coal News, 2021-02-09(003).
    [9]
    郭文兵, 李超. 工作面回采诱发多断层活化对地表建筑物的影响分析[J]. 安全与环境学报, 2018, 18(1): 56-60. https://www.cnki.com.cn/Article/CJFDTOTAL-AQHJ201801012.htm

    GUO Wenbing, LI Chao. Analysis of the impact of the suffered buildings on the ground due to the mining inducing faulty activation[J]. Journal of Safety and Environment, 2018, 18(1): 56-60. https://www.cnki.com.cn/Article/CJFDTOTAL-AQHJ201801012.htm
    [10]
    李化敏, 付凯. 煤矿深部开采面临的主要技术问题及对策[J]. 采矿与安全工程学报, 2006, 23(4): 468-471. DOI: 10.3969/j.issn.1673-3363.2006.04.021

    LI Huamin, FU Kai. Some major technical problems and countermeasures for deep mining[J]. Journal of Mining and Safety Engineering, 2006, 23(4): 468-471. DOI: 10.3969/j.issn.1673-3363.2006.04.021
    [11]
    BRACE W F. Laboratory studies of stick-slip and their application to earthquakes[J]. Tectonophysics, 1972, 14(3/4): 189-200. http://www.sciencedirect.com/science/article/pii/0040195172900686
    [12]
    BAILEY W R, WALSH J J, MANZOCCHI T. Fault populations, strain distribution and basement fault reactivation in the East Pennines coalfield, UK[J]. Journal of Structural Geology, 2005, 27(5): 913-928. DOI: 10.1016/j.jsg.2004.10.014
    [13]
    DONNELLY L J, CULSHAW M G, BELL F G. Longwall mining-induced fault reactivation and delayed subsidence ground movement in British coalfields[J]. Quarterly Journal of Engineering Geology & Hydrogeology, 2008, 41(3): 301-314. http://core.ac.uk/download/pdf/62541.pdf
    [14]
    SJÉBERG J, PERMAN F, QUINTEIRO C, et al. Numerical analysis of alternative mining sequences to minimise potential for fault slip rockbursting[J]. Mining Technology, 2012, 121(4): 226-235. DOI: 10.1179/1743286312Y.0000000016
    [15]
    SAINOKI A, MITRI H S. Effect of fault-slip source mechanism on seismic source parameters[J]. Arabian Journal of Geosciences, 2016, 9(1): 1-12. DOI: 10.1007/s12517-015-2098-7
    [16]
    施泽进, 罗蛰潭, 彭大钧, 等. 突变理论在断层活动机理分析中的应用[J]. 西安地质学院学报, 1996, 18(1): 50-55. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX601.008.htm

    SHI Zejin, LUO Zhetan, PENG Dajun, et al. Application of catastrophe theory to the analyses of mechanism of faulting movement[J]. Journal of Xi'an College of Geology, 1996, 18(1): 50-55. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX601.008.htm
    [17]
    于广明, 谢和平, 杨伦, 等. 采动断层活化分形界面效应的数值模拟研究[J]. 煤炭学报, 1998, 23(4): 396-400. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB804.012.htm

    YU Guangming, XIE Heping, YANG Lun, et al. Numerical simulation of fractal effect induced by activation of fault after coal extraction[J]. Journal of China Coal Society, 1998, 23(4): 396-400. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB804.012.htm
    [18]
    林远东, 涂敏, 刘文震, 等. 基于梯度塑性理论的断层活化机理[J]. 煤炭学报, 2012, 37(12): 2060-2064. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201212021.htm

    LIN Yuandong, TU Min, LIU Wenzhen, et al. Faults activation mechanism based on gradient-dependent plasticity[J]. Journal of China Coal Society, 2012, 37(12): 2060-2064. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201212021.htm
    [19]
    张文忠. 受采动影响底板隐伏断层滞后突水分析[J]. 矿业安全与环保, 2018, 45(6): 83-87. DOI: 10.3969/j.issn.1008-4495.2018.06.019

    ZHANG Wenzhong. Research on the lagging water inrush caused by the hidden fault affected by coal mining on the floor[J]. Mining Safety and Environmental Protection, 2018, 45(6): 83-87. DOI: 10.3969/j.issn.1008-4495.2018.06.019
    [20]
    王学滨, 潘一山, 海龙. 基于剪切应变梯度塑性理论的断层岩爆失稳判据[J]. 岩石力学与工程学报, 2004, 23(4): 588-591. DOI: 10.3321/j.issn:1000-6915.2004.04.011

    WANG Xuebin, PAN Yishan, HAI Long. Instability criterion of fault rockburst based on gradient-dependent plasticity[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(4): 588-591. DOI: 10.3321/j.issn:1000-6915.2004.04.011
    [21]
    夏永学, 王金华, 毛德兵. 断层活化的地应力判别准则及诱发冲击地压的典型微震特征[J]. 煤炭学报, 2016, 41(12): 3008-3015. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201612011.htm

    XIA Yongxue, WANG Jinhua, MAO Debing. Analysis of fault activation induced rock burst risk based on in-situ stress measurements[J]. Journal of China Coal Society, 2016, 41(12): 3008-3015. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201612011.htm
    [22]
    郭寿松. 临近断层的工作面开采诱发断层活化机理研究[J]. 煤炭工程, 2019, 51(7): 93-97. https://www.cnki.com.cn/Article/CJFDTOTAL-MKSJ201907022.htm

    GUO Shousong. Study on the mechanism of fault activation induced by mining near fault zone[J]. Coal Engineering, 2019, 51(7): 93-97. https://www.cnki.com.cn/Article/CJFDTOTAL-MKSJ201907022.htm
    [23]
    于秋鸽, 张华兴, 张玉军, 等. 采动影响下断层活化机理及影响因素分析[J]. 煤炭学报, 2019, 44(增刊1): 18-30. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB2019S1003.htm

    YU Qiuge, ZHANG Huaxing, ZHANG Yujun, et al. Analysis of fault activation mechanism and influencing factors caused by mining[J]. Journal of China Coal Society, 2019, 44(Sup. 1): 18-30. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB2019S1003.htm
    [24]
    蔡武, 窦林名, 王桂峰, 等. 煤层采掘活动引起断层活化的力学机制及其诱冲机理[J]. 采矿与安全工程学报, 2019, 36(6): 1193-1202. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201906016.htm

    CAI Wu, DOU Linming, WANG Guifeng, et al. Mechanism of fault reactivation and its induced coal burst caused by coal mining activities[J]. Journal of Mining and Safety Engineering, 2019, 36(6): 1193-1202. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201906016.htm
    [25]
    陈绍杰, 夏治国, 郭惟嘉, 等. 断层影响下岩体采动灾变响应研究现状与展望[J]. 煤炭科学技术, 2018, 46(1): 20-27. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201801003.htm

    CHEN Shaojie, XIA Zhiguo, GUO Weijia, et al. Research status and prospect of mining catastrophic response of rock mass under the influence of fault[J]. Coal Science and Technology, 2018, 46(1): 20-27. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201801003.htm
    [26]
    WANG Hongwei, SHI Ruiming, DENG Daixin, et al. Characteristic of stress evolution on fault surface and coal bursts mechanism during the extraction of longwall face in Yima mining area, China[J]. Journal of Structural Geology, 2020, 136: 104071. DOI: 10.1016/j.jsg.2020.104071
    [27]
    朱广安, 窦林名, 刘阳, 等. 采动影响下断层滑移失稳的动力学分析及数值模拟[J]. 中国矿业大学学报, 2016, 45(1): 27-33. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201601005.htm

    ZHU Guang'an, DOU Linming, LIU Yang, et al. Dynamic analysis and numerical simulation of fault slip instability induced by coal extraction[J]. Journal of China University of Mining and Technology, 2016, 45(1): 27-33. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201601005.htm
    [28]
    蒋金泉, 武泉林, 曲华. 硬厚岩层下逆断层采动应力演化与断层活化特征[J]. 煤炭学报, 2015, 40(2): 267-277. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201502006.htm

    JIANG Jinquan, WU Quanlin, QU Hua. Characteristic of mining stress evolution and activation of the reverse fault below the hard-thick strata[J]. Journal of China Coal Society, 2015, 40(2): 267-277. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201502006.htm
    [29]
    李美燕, 朱飞龙. 不同断层落差采动应力及活化规律优化研究[J]. 煤矿安全, 2019, 50(4): 218-222. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ201904052.htm

    LI Meiyan, ZHU Feilong. Optimization of mining stress and activation law for different fault drops[J]. Safety in Coal Mines, 2019, 50(4): 218-222. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ201904052.htm
    [30]
    杨继强, 张照允, 王珂. 正断层上盘边角煤开采诱发断层活化规律[J]. 煤矿安全, 2018, 49(12): 204-207. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ201812051.htm

    YANG Jiqiang, ZHANG Zhaoyun, WANG Ke. Activation laws of normal fault induced by edge coal mining in upper wall[J]. Safety in Coal Mines, 2018, 49(12): 204-207. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ201812051.htm
    [31]
    窦仲四, 田诺成, 吴基文. 断层对采动应力的影响数值模拟研究[J]. 煤矿安全, 2019, 50(12): 174-178. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ201912039.htm

    DOU Zhongsi, TIAN Nuocheng, WU Jiwen. Numerical simulation study on influence of faults on mining stress[J]. Safety in Coal Mines, 2019, 50(12): 174-178. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ201912039.htm
    [32]
    JI H G, MA H S, WANG J A, et al. Mining disturbance effect and mining arrangements analysis of near-fault mining in high tectonic stress region[J]. Safety Science, 2012, 50(4): 649-654. http://www.sciencedirect.com/science/article/pii/S0925753511002335
    [33]
    张玉东, 许进鹏. 葛亭煤矿断层活化导水数值模拟研究[J]. 矿业安全与环保, 2013, 40(2): 16-19. https://www.cnki.com.cn/Article/CJFDTOTAL-ENER201302004.htm

    ZHANG Yudong, XU Jinpeng. Numerical simulation study on water conduction caused by fault activation in Geting Mine[J]. Mining Safety and Environmental Protection, 2013, 40(2): 16-19. https://www.cnki.com.cn/Article/CJFDTOTAL-ENER201302004.htm
    [34]
    曹明辉, 刘钒, 王同旭. 断层活化过程及煤柱失稳机理的数值模拟研究[J]. 山东科技大学学报(自然科学版), 2020, 39(2): 61-68. https://www.cnki.com.cn/Article/CJFDTOTAL-SDKY202002007.htm

    CAO Minghui, LIU Fan, WANG Tongxu. Numerical simulation study of fault activation process and coal pillar instability mechanism[J]. Journal of Shandong University of Science and Technology(Natural Science), 2020, 39(2): 61-68. https://www.cnki.com.cn/Article/CJFDTOTAL-SDKY202002007.htm
    [35]
    王爱文, 潘一山, 李忠华, 等. 断层作用下深部开采诱发冲击地压相似试验研究[J]. 岩土力学, 2014, 35(9): 2486-2492. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201409008.htm

    WANG Aiwen, PAN Yishan, LI Zhonghua, et al. Similar experimental study of rockburst induced by mining deep coal seam under fault action[J]. Rock and Soil Mechanics, 2014, 35(9): 2486-2492. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201409008.htm
    [36]
    昌修林, 张培森, 阳华, 等. 采动诱发断层活化规律相似模拟试验研究[J]. 煤炭科学技术, 2018, 46(增刊1): 107-111. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ2018S1024.htm

    CHANG Xiulin, ZHANG Peisen, YANG Hua, et al. Study on similar simulation test of mining-induced fault activation law[J]. Coal Science and Technology, 2018, 46(Sup. 1): 107-111. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ2018S1024.htm
    [37]
    彭苏萍, 孟召平, 李玉林. 断层对顶板稳定性影响相似模拟试验研究[J]. 煤田地质与勘探, 2001, 29(3): 1-4.

    PENG Suping, MENG Zhaoping, LI Yulin. Influence of faults on coal roof stability by physical modeling study[J]. Coal Geology & Exploration, 2001, 29(3): 1-4.
    [38]
    师本强, 侯忠杰. 覆岩中断层活化突水的力学分析及其应用[J]. 岩土力学, 2011, 32(10): 3053-3057. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201110030.htm

    SHI Benqiang, HOU Zhongjie. Mechanical analysis of fault activation water inrush in over burden rock and its application[J]. Rock and Soil Mechanics, 2011, 32(10): 3053-3057. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201110030.htm
    [39]
    李志华, 窦林名, 陆振裕, 等. 采动诱发断层滑移失稳的研究[J]. 采矿与安全工程学报, 2010, 27(4): 499-504. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201004012.htm

    LI Zhihua, DOU Linming, LU Zhenyu, et al. Study of the fault slide destabilization induced by coal mining[J]. Journal of Mining and Safety Engineering, 2010, 27(4): 499-504. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201004012.htm
    [40]
    王涛, 姜耀东, 赵毅鑫, 等. 断层活化与煤岩冲击失稳规律的实验研究[J]. 采矿与安全工程学报, 2014, 31(2): 180-186. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201402003.htm

    WANG Tao, JIANG Yaodong, ZHAO Yixin, et al. Experimental research on fault reactivation and relating coal bumps[J]. Journal of Mining and Safety Engineering, 2014, 31(2): 180-186. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201402003.htm
    [41]
    张兴民, 于克君, 席京德, 等. 微地震技术在煤矿"两带"监测领域的研究与应用[J]. 煤炭学报, 2000, 25(6): 566-570. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB200006001.htm

    ZHANG Xingmin, YU Kejun, XI Jingde, et al. The research and application of microseismic technology in mine fractured and caving zones monitoring[J]. Journal of China Coal Society, 2000, 25(6): 566-570. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB200006001.htm
    [42]
    郭晓强, 窦林名, 陆菜平, 等. 采动诱发断层活化的微震活动规律研究[J]. 煤矿安全, 2011, 42(1): 26-30. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ201101008.htm

    GUO Xiaoqiang, DOU Linming, LU Caiping, et al. Research on the microseismic activity of fault reaction induced by coal mining[J]. Safety in Coal Mines, 2011, 42(1): 26-30. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ201101008.htm
    [43]
    朱斯陶, 姜福兴, KOUAME K J A, 等. 深井特厚煤层综放工作面断层活化规律研究[J]. 岩石力学与工程学报, 2016, 35(1): 50-58. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201601006.htm

    ZHU Sitao, JIANG Fuxing, KOUAME K J A, et al. Fault activation of fully mechanized caving face in extra-thick coal seam of deep shaft[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(1): 50-58. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201601006.htm
    [44]
    赵毅鑫, 王浩, 焦振华, 等. 逆断层下盘工作面回采扰动引发断层活化特征的试验研究[J]. 煤炭学报, 2018, 43(4): 914-922. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201804002.htm

    ZHAO Yixin, WANG Hao, JIAO Zhenhua, et al. Experimental study of the activities of reverse fault induced by footwall coal mining[J]. Journal of China Coal Society, 2018, 43(4): 914-922. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201804002.htm
    [45]
    王宏伟, 邵明明, 王刚, 等. 开采扰动下逆冲断层滑动面应力场演化特征[J]. 煤炭学报, 2019, 44(8): 2318-2327. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201908006.htm

    WANG Hongwei, SHAO Mingming, WANG Gang, et al. Characteristics of stress evolution on the thrust fault plane during the coal mining[J]. Journal of China Coal Society, 2019, 44(8): 2318-2327. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201908006.htm
    [46]
    QIU Liming, SONG Dazhao, LI Zhonghui, et al. Research on AE and EMR response law of the driving face passing through the fault[J]. Safety Science, 2019, 117: 184-193. http://www.sciencedirect.com/science/article/pii/S0925753519303509
    [47]
    鲁晶津, 王冰纯, 颜羽. 矿井电法在煤层采动破坏和水害监测中的应用进展[J]. 煤炭科学技术, 2019, 47(3): 18-26. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201903003.htm

    LU Jingjin, WANG Bingchun, YAN Yu. Advances of mine electrical resistivity method applied in coal seam mining destruction and water inrush monitoring[J]. Coal Science and Technology, 2019, 47(3): 18-26. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201903003.htm
    [48]
    叶庆树, 鲁晶津, 李德山, 等. 视电阻率监测在煤层顶板水害防治的应用[J]. 煤炭科学技术, 2019, 47(增刊2): 202-207. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ2019S2043.htm

    YE Qingshu, LU Jingjin, LI Deshan, et al. Application of resistivity monitoring in water damage control of seam roof[J]. Coal Science and Technology, 2019, 47(Sup. 2): 202-207. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ2019S2043.htm
    [49]
    吴新庆, 吴杰, 丁顺华, 等. 浅部煤层开采对断层活化影响研究[J]. 华北科技学院学报, 2017, 14(3): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-HBKJ201703001.htm

    WU Xinqing, WU Jie, DING Shunhua, et al. Study on the influence of shallow coal seam mining on fault activation[J]. Journal of North China Institute of Science and Technology, 2017, 14(3): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-HBKJ201703001.htm
    [50]
    鲁晶津. 煤矿井下含/导水构造三维电阻率反演成像技术[J]. 煤炭学报, 2016, 41(3): 687-695. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201603022.htm

    LU Jingjin. 3D electrical resistivity inversion and imaging technology for coal mine water-containing/water-conductive structures[J]. Journal of China Coal Society, 2016, 41(3): 687-695. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201603022.htm
    [51]
    张丹, 张平松, 施斌, 等. 采场覆岩变形与破坏的分布式光纤监测与分析[J]. 岩土工程学报, 2015, 37(5): 952-957. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201505029.htm

    ZHANG Dan, ZHANG Pingsong, SHI Bin, et al. Monitoring and analysis of overburden deformation and failure using distributed fiber optic sensing[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(5): 952-957. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201505029.htm
    [52]
    柴敬, 雷武林, 杜文刚, 等. 分布式光纤监测的采场巨厚复合关键层变形试验研究[J]. 煤炭学报, 2020, 45(1): 44-53. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202001006.htm

    CHAI Jing, LEI Wulin, DU Wengang, et al. Deformation of huge thick compound key layer in stope based on distributed optical fiber sensing monitoring[J]. Journal of China Coal Society, 2020, 45(1): 44-53. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202001006.htm
    [53]
    张平松, 鲁海峰, 韩必武, 等. 采动条件下断层构造的变形特征实测与分析[J]. 采矿与安全工程学报, 2019, 36(2): 351-356. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201902018.htm

    ZHANG Pingsong, LU Haifeng, HAN Biwu, et al. Monitoring and analysis of deformation characteristics of fault structure under mining condition[J]. Journal of Mining and Safety Engineering, 2019, 36(2): 351-356. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201902018.htm
    [54]
    张丁丁, 李淑军, 张曦, 等. 分布式光纤监测的采动断层活化特征实验研究[J]. 采矿与岩层控制工程学报, 2020, 2(1): 013018. https://www.cnki.com.cn/Article/CJFDTOTAL-MKKC202001010.htm

    ZHANG Dingding, LI Shujun, ZHANG Xi, et al. Experimental study on mining fault activation characteristics by a distributed optical fiber system[J]. Journal of Mining and Strata Control Engineering, 2020, 2(1): 013018. https://www.cnki.com.cn/Article/CJFDTOTAL-MKKC202001010.htm
    [55]
    周刚, 程卫民, 宋宪明, 等. 兖州及济东煤田煤层注水试验研究[J]. 煤炭科学技术, 2006, 34(3): 56-60. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ200603019.htm

    ZHOU Gang, CHENG Weimin, SONG Xianming, et al. Research on water injection test in seam of Yanzhou and Jidong coalfields[J]. Coal Science and Technology, 2006, 34(3): 56-60. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ200603019.htm
    [56]
    王经明, 董书宁, 吕玲, 等. 采矿对断层的扰动及水文地质效应[J]. 煤炭学报, 1997, 22(4): 361-365. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB704.004.htm

    WANG Jingming, DONG Shuning, LYU Ling, et al. Mining disturbance on faults in panel and the hydrogeological effect[J]. Journal of China Coal Society, 1997, 22(4): 364-365. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB704.004.htm
    [57]
    李建伟. 李家楼煤矿厚煤层开采断层底板破坏深度注水试验研究[J]. 煤炭科技, 2019, 40(3): 40-43. https://www.cnki.com.cn/Article/CJFDTOTAL-META201903015.htm

    LI Jianwei. Experimental study on water injection of failure depth of fault floor in thick seam mining of Lijialou coal mine[J]. Coal Science and Technology Magazine, 2019, 40(3): 40-43. https://www.cnki.com.cn/Article/CJFDTOTAL-META201903015.htm
    [58]
    曹代勇, 占文锋, 李焕同, 等. 中国煤矿动力地质灾害的构造背景与风险区带划分[J]. 煤炭学报, 2020, 45(7): 2376-2388. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202007006.htm

    CAO Daiyong, ZHAN Wenfeng, LI Huantong, et al. Tectonic setting and risk zoning of dynamic geological disasters in coal mines in China[J]. Journal of China Coal Society, 2020, 45(7): 2376-2388. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202007006.htm
    [59]
    宋振骐, 郝建, 汤建泉, 等. 断层突水预测控制理论研究[J]. 煤炭学报, 2013, 38(9): 1511-1515. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201309001.htm

    SONG Zhenqi, HAO Jian, TANG Jianquan, et al. Study on water inrush from fault's prevention and control theory[J]. Journal of China Coal Society, 2013, 38(9): 1511-1515. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201309001.htm
    [60]
    刘泽威, 刘其声, 刘洋. 煤层底板隐伏断层分类及突水防治措施[J]. 煤田地质与勘探, 2020, 48(2): 141-146. DOI: 10.3969/j.issn.1001-1986.2020.02.022

    LIU Zewei, LIU Qisheng, LIU Yang. Classification of hidden faults in coal seam floor and measures for water inrush prevention[J]. Coal Geology & Exploration, 2020, 48(2): 141-146. DOI: 10.3969/j.issn.1001-1986.2020.02.022
    [61]
    潘一山, 李忠华, 章梦涛. 我国冲击地压分布、类型、机理及防治研究[J]. 岩石力学与工程学报, 2003, 22(11): 1844-1851. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200311022.htm

    PAN Yishan, LI Zhonghua, ZHANG Mengtao. Distribution, type, mechanism and prevention of rockburst in China[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(11): 1844-1851. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200311022.htm
    [62]
    吕进国, 王涛, 丁维波, 等. 深部开采逆断层对冲击地压的诱导机制[J]. 煤炭学报, 2018, 43(2): 405-416. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201802014.htm

    LYU Jinguo, WANG Tao, DING Weibo, et al. Induction mechanisms of coal bumps caused by thrust faults during deep mining[J]. Journal of China Coal Society, 2018, 43(2): 405-416. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201802014.htm
    [63]
    杨治国, 王恩营, 李中州. 断层对煤层瓦斯赋存的控制作用[J]. 煤炭科学技术, 2014, 42(6): 104-106. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201406025.htm

    YANG Zhiguo, WANG Enying, LI Zhongzhou. Control effect of fault to seam gas deposit[J]. Coal Science and Technology, 2014, 42(6): 104-106. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201406025.htm
    [64]
    窦林名, 何学秋, REN Ting, 等. 动静载叠加诱发煤岩瓦斯动力灾害原理及防治技术[J]. 中国矿业大学学报, 2018, 47(1): 48-59. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201801007.htm

    DOU Liming, HE Xueqiu, REN Ting, et al. Mechanism of coal-gas dynamic disasters caused by the superposition of static and dynamic loads and its control technology[J]. Journal of China University of Mining and Technology, 2018, 47(1): 48-59. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201801007.htm
    [65]
    陈敏, 张庆华, 王麒翔. 断层对煤与瓦斯突出范围的影响[J]. 煤炭科学技术, 2014, 42(3): 39-41. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201403011.htm

    CHEN Min, ZHANG Qinghua, WANG Qixiang. Effect on scope of coal and gas outburst by fault[J]. Coal Science and Technology, 2014, 42(3): 39-41. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201403011.htm
    [66]
    马念杰, 冯吉成, 吕坤, 等. 煤巷冒顶成因分类方法及其支护对策研究[J]. 煤炭科学技术, 2015, 43(6): 34-40. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201506007.htm

    MA Nianjie, FENG Jicheng, LYU Kun, et al. Study on cause classification method and support countermeasures of roof falling in coal drift[J]. Coal Science and Technology, 2015, 43(6): 34-40. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201506007.htm
    [67]
    韦庆亮, 李彦斌, 谷攀, 等. 综采工作面过断层顶板破坏机理及控制技术[J]. 煤炭工程, 2020, 52(4): 52-57. https://www.cnki.com.cn/Article/CJFDTOTAL-MKSJ202004012.htm

    WEI Qingliang, LI Yanbin, GU Pan, et al. Roof failure mechanism and the control technology of fully mechanized mining face passing through fault[J]. Coal Engineering, 2020, 52(4): 52-57. https://www.cnki.com.cn/Article/CJFDTOTAL-MKSJ202004012.htm
  • Related Articles

    [1]ZHAN Xinyu, GAO Lin, ZHAO Fanghao, WANG Yongyin, LIU Ping, HAN Sen. Experimental study on proportioning of ultra-high strength similar materials for large similarity ratio model tests[J]. COAL GEOLOGY & EXPLORATION, 2023, 51(11): 109-118. DOI: 10.12363/issn.1001-1986.23.05.0237
    [2]SONG Yanqi, WANG Shilei, SUN Chuan, HAO Liangjun. Similar model test and mechanical analysis of fault structure[J]. COAL GEOLOGY & EXPLORATION, 2019, 47(5): 150-156. DOI: 10.3969/j.issn.1001-1986.2019.05.021
    [3]ZHANG Fan, MA Geng, TAO Yunqi, LIU Xiao, FENG Dan, LI Rui. Proportioning experiment of similar material for coal and rock model test[J]. COAL GEOLOGY & EXPLORATION, 2018, 46(1): 119-124. DOI: 10.3969/j.issn.1001-1986.2018.01.021
    [4]HE Jun, ZHENG Zeyong, CHEN Liang. Change features of outburst parameters in the thermal simulation experiment of low metamorphic coal[J]. COAL GEOLOGY & EXPLORATION, 2017, 45(5): 28-32. DOI: 10.3969/j.issn.1001-1986.2017.05.006
    [5]CHENG Jun, ZHANG Lihong, WU Guodai, LIU Jingqing, LIU Zixuan. Relationship between tectonic stress field and coal/gas outburst[J]. COAL GEOLOGY & EXPLORATION, 2012, 40(4): 1-4,11. DOI: 10.3969/j.issn.1001-1986.2012.04.001
    [6]JING Xing-peng, WANG Ya-chao, WANG Wei-feng, PANG Xiang-wei, XU Ping. An experimental research on coalbed spontaneous combustion simulation[J]. COAL GEOLOGY & EXPLORATION, 2009, 37(4): 15-18. DOI: 10.3969/j.issn.1001-1986.2009.04.004
    [7]LI Xin-hu. Lithology identification methods contrast based on support vector machines at different well logging parameter[J]. COAL GEOLOGY & EXPLORATION, 2007, 35(3): 72-76,80.
    [8]HUANG Qing-xiang, LIU Teng-fei. Simulating test on the subsidence law of subsurface water resisting layer upon shallow coalbed mining[J]. COAL GEOLOGY & EXPLORATION, 2006, 34(5): 34-37.
    [9]PENG Su-ping, MENG Zhao-ping, LI Yu-lin. Influence of faults on coal roof stability by physical modeling study[J]. COAL GEOLOGY & EXPLORATION, 2001, 29(3): 1-4.
    [10]Yang Yingtao, Li Kangkang. THE WATER INRUSH MECHANISM IN COAL SEAM FLOOR BY THE PHYSICAL ANALOG SIMULATION TECHNIQUE[J]. COAL GEOLOGY & EXPLORATION, 1997, 25(S1): 33-36.
  • Cited by

    Periodical cited type(15)

    1. 贺丹,杨甫,马丽,付德亮,张丽维. 古城矿区富油煤赋存特征及主控因素分析. 煤炭技术. 2024(02): 97-103 .
    2. 宁树正,张莉,徐小涛,张建强,邹卓. 新疆北部早、中侏罗世富油煤分布规律及控制因素. 煤炭科学技术. 2024(01): 244-254 .
    3. 乔军伟,董伸培,苏刚,王昌建,焦龙祥,梁向阳,杜芳鹏,李领晨. 陕北曹家滩矿井富油煤地球化学特征及其沉积环境. 西安科技大学学报. 2024(02): 289-300 .
    4. 郭伟,杨盼曦,俞尊义,杨甫,王晶,马丽,李红强,杨伯伦,吴志强. 陕北富油煤分子模型构建及其热解提油分子动力学特性. 煤田地质与勘探. 2024(07): 132-143 . 本站查看
    5. 师庆民,耿旭虎,王双明,蔡玥,韩波,王生全,张哲豪,何羽飞. 基于煤体真密度和自然伽马响应规律的富油煤判识. 煤田地质与勘探. 2024(07): 85-96 . 本站查看
    6. 宋超,陈晓坤,徐勇,于志金. 含水率对油气伴生煤恒温热解后氧化特性的影响. 西安科技大学学报. 2024(04): 699-708 .
    7. 李致潍,赵正威,冯烁,韩长城. 吐哈盆地大南湖矿区富油煤赋存特征及主控因素分析. 中国煤炭. 2024(09): 1-8 .
    8. 李新虎,刘晓梅,李晓君,杨承文,李健,程光艺,丁佳萌. 陇东地区富油煤地质特征与主控因素研究. 西安科技大学学报. 2024(05): 901-910 .
    9. 朱士飞,刘威,张静,秦云虎,毛礼鑫. 富油煤煤质特征与原位热解技术开发利用现状. 煤质技术. 2024(06): 23-33 .
    10. 杨甫,段中会,马丽,付德亮,田涛,贺丹,岳明娟. 陕西省富油煤分布及受控地质因素. 煤炭科学技术. 2023(03): 171-181 .
    11. 东振,张梦媛,陈艳鹏,冯烁,薛俊杰,陈浩,田继军,陈姗姗,赵宇峰,王兴刚,焦立新,李斌. 三塘湖-吐哈盆地富油煤赋存特征与资源潜力分析. 煤炭学报. 2023(10): 3789-3805 .
    12. 马丽,王双明,段中会,杨甫,付德亮,贺丹,张丽维. 陕西省富油煤资源潜力及开发建议. 煤田地质与勘探. 2022(02): 1-8 . 本站查看
    13. 高文博,冯烁,田继军,吴斌. 三塘湖煤田汉水泉矿区富油煤赋存特征及沉积环境分析. 煤炭工程. 2022(10): 136-140 .
    14. 王双美. 青龙寺井田主采煤层古泥炭沼泽演化规律研究. 煤炭科学技术. 2021(03): 181-188 .
    15. 吴鹏,曹地,朱光辉,柳雪青,李勇,李洋冰,胡维强,刘再振,孔为,费景亮. 鄂尔多斯盆地东缘临兴地区海陆过渡相页岩气地质特征及成藏潜力. 煤田地质与勘探. 2021(06): 24-34 . 本站查看

    Other cited types(1)

Catalog

    Article Metrics

    Article views (584) PDF downloads (88) Cited by(16)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return