DING Wanqi, MA Zhenqian, ZU Ziyin, XIE Hongfei, YANG Wei, CHEN Chuan. Research on the evolution law of roadway surrounding rock fissure based on fractal dimension[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(3): 167-174. DOI: 10.3969/j.issn.1001-1986.2021.03.021
Citation: DING Wanqi, MA Zhenqian, ZU Ziyin, XIE Hongfei, YANG Wei, CHEN Chuan. Research on the evolution law of roadway surrounding rock fissure based on fractal dimension[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(3): 167-174. DOI: 10.3969/j.issn.1001-1986.2021.03.021

Research on the evolution law of roadway surrounding rock fissure based on fractal dimension

More Information
  • Received Date: November 22, 2020
  • Revised Date: April 05, 2021
  • Published Date: June 24, 2021
  • To explore the evolution law of surrounding rock fissures under the influence of horizontal stress and dynamic disturbance in argillaceous roadways, the deformation and failure characteristics of argillaceous roadways, the evolution law of surrounding rock fissures and the fractal evolution characteristics of surrounding rock fissures under dynamic disturbance are studied by such methods as field investigation, numerical simulation and fractal theory analysis, with the 226 track gate of Shanjiaoshu Mine in Panzhou City as the engineering background. The results show that before dynamic disturbance, the expansion range of fracture zone and plastic zone of roadways gradually increases with the increase of lateral pressure coefficient, and the roadway has large deformation. After the disturbance, the fracture density of surrounding rock increases gradually with the increase of lateral pressure coefficient, and the shallow fractures extend through and gradually extend to the deep. The fracture zone and plastic zone of roadways show comprehensive irregular expansion. Under the influence of disturbance, the fractal dimension of surrounding rock fractures of roadway shows obvious increasing dimension phenomenon compared with that before disturbance. With the increase of lateral pressure coefficient, the fracture network becomes more complex, and the shallow fractures further spread to the deeper part, which makes the rock mass fracture more serious and leads to severe deformation and failure of roadway.
  • [1]
    孟庆彬, 韩立军, 张建, 等. 深部高应力破碎软岩巷道支护技术研究及其应用[J]. 中南大学学报(自然科学版), 2016. 47(11): 3861-3872. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201611033.htm

    MENG Qingbin, HAN Lijun, ZHANG Jian, et al. Research and application of supporting technology in deep high stress fractured soft-rock roadway[J]. Journal of Central South University(Science and Technology), 2016, 47(11): 3861-3872. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201611033.htm
    [2]
    孟庆彬, 韩立军, 乔卫国, 等. 泥质弱胶结软岩巷道变形破坏特征与机理分析[J]. 采矿与安全工程学报, 2016, 33(6): 1014-1022. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201606009.htm

    MENG Qingbin, HAN Lijun, QIAO Weiguo, et al. Deformation failure characteristics and mechanism analysis of muddy weakly cemented soft rock roadway[J]. Journal of Mining & Safety Engineering, 2016, 33(6): 1014-1022. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201606009.htm
    [3]
    王思栋, 朱宗磊, 杨斌. 滨湖矿巷道围岩裂隙演化规律实测研究[J]. 煤矿安全, 2019, 50(10): 66-70. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ201910015.htm

    WANG Sidong, ZHU Zonglei, YANG Bin. Experimental study on evolution law of surrounding rock fissures in roadway of Binhu Coal Mine[J]. Safety in Coal Mines, 2019, 50(10): 66-70. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ201910015.htm
    [4]
    柏立田, 张兴阳, 徐钧. 泥岩顶板巷道裂隙演化规律及控制的应用研究[J]. 煤炭工程, 2010, 42(9): 66-69. DOI: 10.3969/j.issn.1671-0959.2010.09.027

    BAI Litian, ZHANG Xingyang, XU Jun. Research on the evolution law and control of cracks in mudstone roof roadway[J]. Coal Engineering, 2010, 42(9): 66-69. DOI: 10.3969/j.issn.1671-0959.2010.09.027
    [5]
    刘洪林, 李国栋, 王宏志. 近距离煤柱下巷道围岩裂隙演化规律研究[J]. 煤矿安全, 2021, 52(2): 219-224. https://cdmd.cnki.com.cn/Article/CDMD-10290-1018827239.htm

    LIU Hong1in, LI Guodong, WANG Hongzhi. Study on fracture evolution of surrounding roadway under close distance coal pillar[J]. Safety in Coal Mines, 2021, 52(2): 219-224. https://cdmd.cnki.com.cn/Article/CDMD-10290-1018827239.htm
    [6]
    杨朋, 华心祝, 刘钦节, 等. 深井大断面沿空留巷底板裂隙分形特征动态演化规律试验研究[J]. 岩土力学, 2017, 38(增刊1): 351-358. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2017S1051.htm

    YANG Peng, HUA Xinzhu, LIU Qinjie, et al. Experimental study of dynamic evolution characteristic of floor fractal dimension of gob-side entry retaining with large section in deep mine[J]. Rock and Soil Mechanics, 2017, 38(Sup. 1): 351-358. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2017S1051.htm
    [7]
    徐学锋, 刘军, 张银亮. 基于煤层巷道开挖卸荷效应的底板冲击孕育过程研究[J]. 煤田地质与勘探, 2015, 43(2): 77-82. DOI: 10.3969/j.issn.1001-1986.2015.02.016

    XU Xuefeng, LIU Jun, ZHANG Yinliang. Preparatory process of floor shock caused by unloading effect during excavation of coal roadway[J]. Coal Geology & Exploration, 2015, 43(2): 77-82. DOI: 10.3969/j.issn.1001-1986.2015.02.016
    [8]
    张华磊, 王连国, 涂敏, 等. 采动环境下巷道围岩破裂演化规律及其控制技术研究[J]. 采矿与安全工程学报, 2013, 30(5): 653-658. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201305004.htm

    ZHANG Hualei, WANG Lianguo, TU Min, et al. Study on failure evolution laws and control technology of roadway surrounding rock under mining circumstances[J]. Journal of Mining & Safety Engineering, 2013, 30(5): 653-658. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201305004.htm
    [9]
    张明建, 镐振, 郜进海, 等. 不同水平应力作用下巷道围岩破坏特征研究[J]. 煤炭科学技术, 2014, 42(3): 4-7. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201403002.htm

    ZHANG Mingjian, HAO Zhen, GAO Jinhai, et al. Study on failure features of surrounding rock in mine gateway under different horizontal stress[J]. Coal Science and Technology, 2014, 42(3): 4-7. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201403002.htm
    [10]
    李学华, 梁顺, 姚强岭, 等. 泥岩顶板巷道围岩裂隙演化规律与冒顶机理分析[J]. 煤炭学报, 2011, 36(6): 903-908. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201106004.htm

    LI Xuehua, LIANG Shun, YAO Qiangling, et al. Analysis on fissure-evolving law and roof-falling mechanism in roadway with mudstone roof[J]. Journal of China Coal Society, 2011, 36(6): 903-908. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201106004.htm
    [11]
    杨仁树, 李永亮, 郭东明, 等. 深部高应力软岩巷道变形破坏原因及支护技术[J]. 采矿与安全工程学报, 2017, 34(6): 1035-1041. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201706001.htm

    YANG Renshu, LI Yongliang, GUO Dongming, et al. Deformation reasons and support technology of deep and high-stress soft rock roadway[J]. Journal of Mining & Safety Engineering, 2017, 34(6): 1035-1041. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201706001.htm
    [12]
    袁越, 王卫军, 袁超, 等. 深部矿井动压回采巷道围岩大变形破坏机理[J]. 煤炭学报, 2016, 41(12): 2940-2950. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201612003.htm

    YUAN Yue, WANG Weijun, YUAN Chao, et al. Large deformation failure mechanism of surrounding rock for gateroad under dynamic pressure in deep coal mine[J]. Journal of China Coal Society, 2016, 41(12): 2940-2950. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201612003.htm
    [13]
    黄耀光, 张天军. 深部高地应力巷道塑性破坏特征及注浆支护[J]. 采矿与安全工程学报, 2019, 36(5): 949-958. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201905012.htm

    HUANG Yaoguang, ZHANG Tianjun. Plastic failure characteristics and grouting support of deep roadway with high ground stress[J]. Journal of Mining & Safety Engineering, 2019, 36(5): 949-958. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201905012.htm
    [14]
    张红军, 李海燕, 李术才, 等. 深部软岩巷道围岩变形机制及支护技术研究[J]. 采矿与安全工程学报, 2015, 32(6): 955-962. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201506015.htm

    ZHANG Hongjun, LI Haiyan, LI Shucai, et al. Deformation mechanism of surrounding rock and support technology in deep soft rock roadway[J]. Journal of Mining & Safety Engineering, 2015, 32(6): 955-962. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201506015.htm
    [15]
    王金安, 冯锦艳, 蔡美峰. 急倾斜煤层开采覆岩裂隙演化与渗流的分形研究[J]. 煤炭学报, 2008, 33(2): 162-165. DOI: 10.3321/j.issn:0253-9993.2008.02.010

    WANG Jin'an, FENG Jinyan, CAI Meifeng. Fractal analysis on the crack evolution and fluid flow in the overburden strata caused by high steep thick coal seam mining[J]. Journal of China Coal Society, 2008, 33(2): 162-165. DOI: 10.3321/j.issn:0253-9993.2008.02.010
    [16]
    王国艳, 于广明, 于永江, 等. 采动岩体裂隙分维演化规律分析[J]. 采矿与安全工程学报, 2012, 29(6): 859-863. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201206018.htm

    WANG Guoyan, YU Guangming, YU Yongjiang, et al. Study on cracks fractal evolution laws of mining rock mass[J]. Journal of Mining & Safety Engineering, 2012, 29(6): 859-863. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201206018.htm
    [17]
    刘洪涛, 赵志强, 张胜凯, 等. 近距离煤层群围岩碎裂特征与裂隙分布关系[J]. 煤炭学报, 2015, 40(4): 766-773. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201504010.htm

    LIU Hongtao, ZHAO Zhiqiang, ZHANG Shengkai, et al. Relationship between failure characteristics and fracture spacing of surrounding rock of short-distance coal seams group[J]. Journal of China Coal Society, 2015, 40(4): 766-773. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201504010.htm
    [18]
    王志刚, 郭晓菲. 双河煤矿采动巷道顶板裂隙的分形研究[J]. 岩土力学, 2017, 38(8): 2377-2384. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201708030.htm

    WANG Zhigang, GUO Xiaofei. Study of roof fissures of mining induced roadway in Shuanghe Coal Mine based on fractal theory[J]. Rock and Soil Mechanics, 2017, 38(8): 2377-2384. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201708030.htm
    [19]
    荣海, 韩永亮, 张宏伟, 等. 红庆梁煤矿地应力场特征及巷道稳定性分析[J]. 煤田地质与勘探, 2020, 48(5): 144-151. DOI: 10.3969/j.issn.1001-1986.2020.05.018

    RONG Hai, HAN Yongliang, ZHANG Hongwei, et al. Characteristics of in-situ stress field and stability analysis of roadway in Hongqingliang Coal Mine[J]. Coal Geology & Exploration, 2020, 48(5): 144-151. DOI: 10.3969/j.issn.1001-1986.2020.05.018
    [20]
    耿伟乐, 董子文, 郭胜利, 等. 深部高应力巷道变形特性与支护时机[J]. 煤田地质与勘探, 2019, 47(6): 126-134. http://mdkt.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=a4cdee18-2cfa-48cd-9bab-9d228a9bc461

    GENG Weile, DONG Ziwen, GUO Shengli, et al. Deformation characteristics and support timing of deep high stress roadway[J]. Coal Geology & Exploration, 2019, 47(6): 126-134. http://mdkt.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=a4cdee18-2cfa-48cd-9bab-9d228a9bc461
    [21]
    宋卫华, 邸春雷, 邓兆睿. 动静载组合下巷道过断层破碎带支护技术[J]. 煤田地质与勘探, 2019, 47(6): 135-143. http://mdkt.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=eca2ac9d-9bf6-476c-8cd2-fde3b66d18fe

    SONG Weihua, DI Chunlei, DENG Zhaorui. Supporting technology of roadway crossing fractured zone of fault under dynamic and static load[J]. Coal Geology & Exploration, 2019, 47(6): 135-143. http://mdkt.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=eca2ac9d-9bf6-476c-8cd2-fde3b66d18fe
    [22]
    方腾蛟, 廖学东, 和卢斌, 等. 采动影响下软岩巷道破坏机理及控制[J]. 煤田地质与勘探, 2014, 42(2): 67-70. DOI: 10.3969/j.issn.1001-1986.2014.02.014

    FANG Tengjiao, LIAO Xuedong, HE Lubin, et al. Failure mechanism and control of soft rock roadway under mining disturbance[J]. Coal Geology & Exploration, 2014, 42(2): 67-70. DOI: 10.3969/j.issn.1001-1986.2014.02.014
    [23]
    孙艺丹, 杨逾, 孙博一, 等. 动力扰动下巷道围岩变形影响因素敏感性分析[J]. 煤炭科学技术, 2020, 48(5): 57-62. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ202005007.htm

    SUN Yidan, YANG Yu, SUN Boyi, et al. Sensitivity analysis of roadway surrounding rock deformation factors under dynamic disturbance[J]. Coal Science and Technology, 2020, 48(5): 57-62. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ202005007.htm
    [24]
    勾攀峰, 张振普, 韦四江. 不同水平应力作用下巷道围岩破坏特征的物理模拟试验[J]. 煤炭学报, 2009, 34(10): 1328-1332. DOI: 10.3321/j.issn:0253-9993.2009.10.006

    GOU Panfeng, ZHANG Zhenpu, WEI Sijiang. Physical simulation test of damage character of surrounding rock under different levels of the horizontal stress[J]. Journal of China Coal Society, 2009, 34(10): 1328-1332. DOI: 10.3321/j.issn:0253-9993.2009.10.006
    [25]
    杨本生, 贾永丰, 孙利辉. 高水平应力巷道连续"双壳"治理底臌实验研究[J]. 煤炭学报, 2014, 39(8): 1504-1510. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201408019.htm

    YANG Bensheng, JIA Yongfeng, SUN Lihui. Experimental research on the continuous "double shell" harnessing floor heave in high horizontal stress roadway[J]. Journal of China Coal Society, 2014, 39(8): 1504-1510. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201408019.htm
  • Related Articles

    [1]WANG Kai, FU Qiang, XU Chao, AI Zibo, WANG lei, SHU Longyong. Threshold segmentation method of CT scanning data of coal and rock samples considering beam hardening effect and its application[J]. COAL GEOLOGY & EXPLORATION, 2023, 51(4): 11-22. DOI: 10.12363/issn.1001-1986.22.08.0641
    [2]YUAN Mingdao, TAN Cai, LI Yang, XU Yunqian, ZHANG Xuhui, YANG Jingxue. A pipeline robot detection image enhancement method based on image fusion and improved threshold[J]. COAL GEOLOGY & EXPLORATION, 2019, 47(4): 178-185. DOI: 10.3969/j.issn.1001-1986.2019.04.027
    [3]YANG Liangang, LI Lingyun, YANG Yumei, QU Yuanji, YAN Ke. A method of random noise suppression based on compressed sensing[J]. COAL GEOLOGY & EXPLORATION, 2019, 47(4): 165-171. DOI: 10.3969/j.issn.1001-1986.2019.04.025
    [4]LIU Qiang. Study on noise attenuation of seismic while mining[J]. COAL GEOLOGY & EXPLORATION, 2019, 47(3): 25-28,34. DOI: 10.3969/j.issn.1001-1986.2019.03.005
    [5]SHI Zhanzhan, XIA Yanqing, ZHOU Huailai, CHI Yuelong, PANG Su. Random noise attenuation by EEMD in common offset gathers[J]. COAL GEOLOGY & EXPLORATION, 2019, 47(1): 187-193,199. DOI: 10.3969/j.issn.1001-1986.2019.01.029
    [6]BAO Qianzong, CHEN Wenchao, GAO Jinghuai. Seismic data random noise attenuation based on the second generation Curvelet transform[J]. COAL GEOLOGY & EXPLORATION, 2010, 38(1): 66-70. DOI: 10.3969/j.issn.1001-1986.2010.01.016
    [7]YAN Jia-bin, LIU Gui-zhong. Like-impulse electromagnetic noise processing based wavelet transform[J]. COAL GEOLOGY & EXPLORATION, 2007, 35(5): 61-65.
    [8]SONG Fei, ZHAO Fa-suo. Study on statistical damage constitutive model in consideration of damage threshold[J]. COAL GEOLOGY & EXPLORATION, 2007, 35(3): 59-62.
    [9]FU Yan. A new method of removing strong energy random noises in seismic data processing[J]. COAL GEOLOGY & EXPLORATION, 2003, 31(5): 51-54.
    [10]FU Yan, ZHAO Rong-chun. Signal-to-noise ratio enhancement in seismic data via the modified KL transforms[J]. COAL GEOLOGY & EXPLORATION, 2002, 30(3): 49-54.

Catalog

    Article Metrics

    Article views (185) PDF downloads (12) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return