MA Hewen. Surface subsidence control technology of multi-bed separation grouting[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(3): 150-157. DOI: 10.3969/j.issn.1001-1986.2021.03.019
Citation: MA Hewen. Surface subsidence control technology of multi-bed separation grouting[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(3): 150-157. DOI: 10.3969/j.issn.1001-1986.2021.03.019

Surface subsidence control technology of multi-bed separation grouting

More Information
  • Received Date: December 24, 2020
  • Revised Date: April 12, 2021
  • Published Date: June 24, 2021
  • In order to enhance the injection ratio to meet the surface subsidence controlling requirements without obvious thick-and-hard strata in overburden for generating large-scale bed separation, the multi-bed separation grouting method is proposed in this paper. The scale model test is used to study the spatiotemporal evolution of overburden due to multi-bed separation grouting. The field measurements is proven that multi-bed separation grouting can successfully mitigate overburden failure and subsidence by increasing the boreholes number, and multi-bed separation grouting has successfully applied in Huaibei mining area. Filling masses with different diffusion radii are commonly formed in the different bed separation, which can effectively support the overlying. The surface subsidence reduction ratio can reach 79.92%. The formula for injection quantity calculation can accurately predict the overburden grouting with an accuracy rate of over 91%, providing the beneficial guidance for the overburden grouting engineering and the reference for the prediction of subsidence reduction rate. This research presents an effective and cost-efficient approach for addressing the surface subsidence, and expands the application scope of overburden grouting is expanded.
  • [1]
    刘建功, 李新旺, 何团. 我国煤矿充填开采应用现状与发展[J]. 煤炭学报, 2020, 45(1): 141-150. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202001015.htm

    LIU Jiangong, LI Xinwang, HE Tuan. Application status and prospect of backfill mining in Chinese coal mines[J]. Journal of China Coal Society, 2020, 45(1): 141-150. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202001015.htm
    [2]
    郭广礼, 王悦汉, 马占国. 煤矿开采沉陷有效控制的新途径[J]. 中国矿业大学学报, 2004, 33(2): 150-153. DOI: 10.3321/j.issn:1000-1964.2004.02.006

    GUO Guangli, WANG Yuehan, MA Zhanguo. A new method for ground subsidence control in coal mining[J]. Journal of China University of Mining & Technology, 2004, 33(2): 150-153. DOI: 10.3321/j.issn:1000-1964.2004.02.006
    [3]
    胡炳南. 我国煤矿充填开采技术及其发展趋势[J]. 煤炭科学技术, 2012, 40(11): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201211002.htm

    HU Bingnan. Backfill mining technology and development tendency in China coal mine[J]. Coal Science and Technology, 2012, 40(11): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201211002.htm
    [4]
    康红普, 徐刚, 王彪谋, 等. 我国煤炭开采与岩层控制技术发展40 a及展望[J]. 采矿与岩层控制工程学报, 2019, 1(1): 013501. https://www.cnki.com.cn/Article/CJFDTOTAL-MKKC201902002.htm

    KANG Hongpu, XU Gang, WANG Biaomou, et al. Forty years development and prospects of underground coal mining and strata control technologies in China[J]. Journal of Mining and Strata Control Engineering, 2019, 1(1): 013501. https://www.cnki.com.cn/Article/CJFDTOTAL-MKKC201902002.htm
    [5]
    孙希奎. 矿山绿色充填开采发展现状及展望[J]. 煤炭科学技术, 2020, 48(9): 48-55. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ202009005.htm

    SUN Xikui. Present situation and prospect of green backfill mining in mines[J]. Coal Science and Technology, 2020, 48(9): 48-55. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ202009005.htm
    [6]
    王金庄, 康建荣, 吴立新. 煤矿覆岩离层注浆减缓地表沉降机理与应用探讨[J]. 中国矿业大学学报, 1999, 28(4): 331-334. DOI: 10.3321/j.issn:1000-1964.1999.04.008

    WANG Jinzhuang, KANG Jianrong, WU Lixin. Discussion on mechanism and application of grouting in separated-bed to reduce surface subsidence induced by coal mining[J]. Journal of China University of Mining & Technology, 1999, 28(4): 331-334. DOI: 10.3321/j.issn:1000-1964.1999.04.008
    [7]
    郭文兵, 马志宝, 白二虎. 我国煤矿"三下一上"采煤技术现状与展望[J]. 煤炭科学技术, 2020, 48(9): 16-26. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ202009002.htm

    GUO Wenbing, MA Zhibao, BAI Erhu. Current status and prospect of coal mining technology under buildings, water bodies and railways, and above confined water in China[J]. Coal Science and Technology, 2020, 48(9): 16-26. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ202009002.htm
    [8]
    许家林, 钱鸣高. 岩层采动裂隙分布在绿色开采中的应用[J]. 中国矿业大学学报, 2004, 33(2): 141-144. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD200402004.htm

    XU Jialin, QIAN Minggao. Study and application of mining-induced fracture distribution in green mining[J]. Journal of China University of Mining & Technology, 2004, 33(2): 141-144. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD200402004.htm
    [9]
    何国清, 杨伦, 凌赓娣, 等. 矿山开采沉陷学[M]. 徐州: 中国矿业大学出版社, 1994.

    HE Guoqing, YANG Lun, LING Gengdi, et al. Mining subsidence science[M]. Xuzhou: China University of Mining and Technology Press, 1994.
    [10]
    杨伦. 对采动覆岩离层注浆减沉技术的再认识[J]. 煤炭学报, 2002, 27(4): 352-356. DOI: 10.3321/j.issn:0253-9993.2002.04.004

    YANG Lun. Re-understand the technology of reducing the subsidence due to mining by injecting grouts into separated beds in overlying disrupted strata by extraction[J]. Journal of China Coal Society, 2002, 27(4): 352-356. DOI: 10.3321/j.issn:0253-9993.2002.04.004
    [11]
    许家林, 轩大洋, 朱卫兵, 等. 部分充填采煤技术的研究与实践[J]. 煤炭学报, 2015, 40(6): 1303-1312. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201506012.htm

    XU Jialin, XUAN Dayang, ZHU Weibing, et al. Study and application of coal mining with partial backfilling[J]. Journal of China Coal Society, 2015, 40(6): 1303-1312. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201506012.htm
    [12]
    朱卫兵, 许家林, 赖文奇, 等. 覆岩离层分区隔离注浆充填减沉技术的理论研究[J]. 煤炭学报, 2007, 32(5): 458-462. DOI: 10.3321/j.issn:0253-9993.2007.05.003

    ZHU Weibing, XU Jialin, LAI Wenqi, et al. Research of isolated section-grouting technology for overburden bed separation space to reduce subsidence[J]. Journal of China Coal Society, 2007, 32(5): 458-462. DOI: 10.3321/j.issn:0253-9993.2007.05.003
    [13]
    许家林, 钱鸣高. 覆岩注浆减沉钻孔布置的试验研究[J]. 中国矿业大学学报, 1998, 27(3): 276-279. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD803.014.htm

    XU Jialin, QIAN Minggao. Study on layout of grouting boreholes for retarding stratum subsidence[J]. Journal of China University of Mining & Technology, 1998, 27(3): 276-279. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD803.014.htm
    [14]
    许家林, 倪建明, 轩大洋, 等. 覆岩隔离注浆充填不迁村采煤技术[J]. 煤炭科学技术, 2015, 43(12): 8-11. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201512002.htm

    XU Jialin, NI Jianming, XUAN Dayang, et al. Coal mining technology without village relocation by isolated grout injection into overburden[J]. Coal Science and Technology, 2015, 43(12): 8-11. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201512002.htm
    [15]
    许家林, 轩大洋, 朱卫兵, 等. 基于关键层控制的部分充填采煤技术[J]. 采矿与岩层控制工程学报, 2019, 1(1): 013504. https://www.cnki.com.cn/Article/CJFDTOTAL-MKKC201902006.htm

    XU Jialin, XUAN Dayang, ZHU Weibing, et al. Partial backfilling coal mining technology based on key strata control[J]. Journal of Mining and Strata Control Engineering, 2019, 1(1): 013504. https://www.cnki.com.cn/Article/CJFDTOTAL-MKKC201902006.htm
    [16]
    连建发, 慎乃齐, 张杰坤. 分形理论在岩体质量评价中的应用研究[J]. 岩石力学与工程学报, 2001, 20(增刊1): 1695-1698. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2001S1019.htm

    LIAN Jianfa, SHEN Naiqi, ZHANG Jiekun. Application research on fractal theory in rockmass quality evaluation[J]. Chinese Journal of Rock Mechanics and Engineering, 2001, 20(Sup. 1): 1695-1698. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2001S1019.htm
    [17]
    李宏艳, 王维华, 齐庆新, 等. 基于分形理论的采动裂隙时空演化规律研究[J]. 煤炭学报, 2014, 39(6): 1023-1030. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201406007.htm

    LI Hongyan, WANG Weihua, QI Qingxin, et al. Study on fissure development rule of overlying strata influenced by mining based on fractal theory[J]. Journal of China Coal Society, 2014, 39(6): 1023-1030. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201406007.htm
    [18]
    国家安全监管总局, 国家煤矿安监局, 国家能源局, 等. 建筑物、水体、铁路及主要井巷煤柱留设与压煤开采规范[S]. 北京: 煤炭工业出版社, 2017.

    State Administration of Safety, National Coal Mine Safety Administration, National Energy Administration, et al. Code for coal pillar retention and pressed coal mining in buildings, water bodies, railways and main shafts[S]. Beijing: China Coal Industry Publishing House, 2017.
    [19]
    杨伦. 我国首例离层注浆减沉试验的再思考[J]. 中国地质灾害与防治学报, 2006, 17(1): 102-104. DOI: 10.3969/j.issn.1003-8035.2006.01.025

    YANG Lun. Re-thinking about the first subsidence reducing test of injecting grout into separated beds in China[J]. The Chinese Journal of Geological Hazard and Control, 2006, 17(1): 102-104. DOI: 10.3969/j.issn.1003-8035.2006.01.025
    [20]
    唐亦川, 邢聪聪, 刘东海, 等. 缓倾斜煤层走向长壁式工作面地表沉陷盆地模型[J]. 煤田地质与勘探, 2020, 48(5): 165-173. DOI: 10.3969/j.issn.1001-1986.2020.05.020

    TANG Yichuan, XING Congcong, LIU Donghai, et al. Model of surface subsidence basin for long-wall working face along strike of gently inclined coal seam[J]. Coal Geology & Exploration, 2020, 48(5): 165-173. DOI: 10.3969/j.issn.1001-1986.2020.05.020
    [21]
    崔希民, 邓喀中. 煤矿开采沉陷预计理论与方法研究评述[J]. 煤炭科学技术, 2017, 45(1): 160-169. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201701027.htm

    CUI Ximin, DENG Kazhong. Research review of predicting theory and method for coal mining subsidence[J]. Coal Science and Technology, 2017, 45(1): 160-169. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201701027.htm
    [22]
    郭文兵, 邓喀中, 邹友峰. 条带开采地表移动参数研究[J]. 煤炭学报, 2005, 30(2): 182-186. DOI: 10.3321/j.issn:0253-9993.2005.02.011

    GUO Wenbing, DENG Kazhong, ZOU Youfeng. Research on surface movement parameters of strip-partial mining[J]. Journal of China Coal Society, 2005, 30(2): 182-186. DOI: 10.3321/j.issn:0253-9993.2005.02.011
  • Related Articles

    [1]XU Bin, XIANG Fang, LI Shuxia. Distribution characteristics and paleo-climatic significance of continental climate-sensitive sediments in the Late Cretaceous in China[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(5): 190-199. DOI: 10.3969/j.issn.1001-1986.2021.05.021
    [2]ZHANG Xiaohui, YAO Huifang, LI Wei, WANG Xiujuan, YAN Jiwei. Fractal characteristics of nano-pore structure in tectonically deformed coals in Hancheng mining area[J]. COAL GEOLOGY & EXPLORATION, 2014, 42(5): 4-8. DOI: 10.3969/j.issn.1001-1986.2014.05.002
    [3]CAO Xinkuan, ZHU Yanming, WANG Daohua, ZHAO Wen. Analysis of the coal bed methane occurrence characteristics and gas-controlling geologic factors in Zhenzhuang block[J]. COAL GEOLOGY & EXPLORATION, 2011, 39(1): 16-19,23. DOI: 10.3969/j.issn.1001-1986.2011.01.004
    [4]ZHANG Ke, YAO Su-ping, HU Wen-xuan, FANG Hong-feng. Analysis on infrared spectra characteristic of coal and discussion of coalification mechanism[J]. COAL GEOLOGY & EXPLORATION, 2009, 37(6): 8-13. DOI: 10.3969/j.issn.1001-1986.2009.06.003
    [5]CHEN Ling-xia, WANG Zhi-rong, LI Xiao-ming. The influence of tectonic stress on coalification and its gas disaster[J]. COAL GEOLOGY & EXPLORATION, 2009, 37(5): 11-14. DOI: 10.3969/j.issn.1001-1986.2009.05.003
    [6]ZHU Zhi-min, SHEN Bing, YAN Jian-fei, CUI Hong-qing. Coalbed methane system:an unconventional petroleum system[J]. COAL GEOLOGY & EXPLORATION, 2006, 34(4): 30-33.
    [7]Zhang Hui, Zheng Yuzhu, Xi Xianwu. THE COAL METAMORPHISM AND COALBED GAS GENERATION IN TIEFA BASIN[J]. COAL GEOLOGY & EXPLORATION, 1999, 27(4): 30-33.
    [8]Huo Yongzhong, Zhang Aiyun. THE GENETIC CLASSIFICATION AND ITS APPLICATION OF MICROFRACTURE IN COAL RESERVOIR[J]. COAL GEOLOGY & EXPLORATION, 1998, 26(6): 28-32.
    [9]QIN Yong, LI Shu-qin, LIU Huan-jie. COALIFICATION MICRO-ENVIRONMENTS AND DIFFERENTIAL COALIFICATION OF DESMOCOLLINITES[J]. COAL GEOLOGY & EXPLORATION, 1994, 22(2): 24-19.
    [10]Xiao Xianming, Cheng Dingsheng. STUDIES ON THE COALIFICATION OF SAPROPELIC COALS[J]. COAL GEOLOGY & EXPLORATION, 1992, 20(2): 21-29.

Catalog

    Article Metrics

    Article views (392) PDF downloads (60) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return