FAN Juan, HOU Enke, JIN Dewu, QIAO Wei, NAN Shenghui. Construction and transformation technology of three-dimensional fine model of mine water diversion structure[J]. COAL GEOLOGY & EXPLORATION, 2020, 48(6): 186-194. DOI: 10.3969/j.issn.1001-1986.2020.06.025
Citation: FAN Juan, HOU Enke, JIN Dewu, QIAO Wei, NAN Shenghui. Construction and transformation technology of three-dimensional fine model of mine water diversion structure[J]. COAL GEOLOGY & EXPLORATION, 2020, 48(6): 186-194. DOI: 10.3969/j.issn.1001-1986.2020.06.025

Construction and transformation technology of three-dimensional fine model of mine water diversion structure

Funds: 

National Key R&D Program of China(2017YFC0804100);Science and Technology Innovation Fund of Xi’an Research Institute of CCTEG(2015XAYMS20)

More Information
  • Received Date: May 06, 2020
  • Revised Date: November 08, 2020
  • Published Date: December 24, 2020
  • In order to solve the technical problems of fine depiction of mine water structures and flexible inheritance of 3D geological models, such as the lack of fine depiction of internal rock structure of trapped columns and inaccurate fusion of multi-source data, the research on the construction method of multi-source data fusion solid model of mine water guide structures, the fine model construction process and the development of model conversion system was carried out. Based on the theory of data fusion distributed structure, the three-level coupling strategy of geological data coupling, entity model coupling and construction model coupling was adopted to establish a set of construction methods for fusion of multi-source data of hydrogeological exploration into three-dimensional geological entity model. Through the four key steps of standardized preprocessing of multi-source heterogeneous geological data, tracking and classification, data registration, correlation and fusion, a solid model of multi-source data fusion of mine water-conducting structure was constructed. On the basis of geostatistical research, the basic concepts of "mine fine hydraulic structure model" and "wide area generalization model" were proposed, and the wide area conceptual model and fine model of the trapped column were constructed, taking the trapped column as an example. According to the properties and data structure characteristics of the two 3D models of SURPAC and FLAC3D, the conversion method between SURPAC and FLAC3D models of mine hydraulic structures was proposed. Developed the SURPAC-FLAC3D model conversion system using JAVA and TCL languages, which supports local, network operation and remote control of multiple machines for multiple users simultaneously. The system finally achieved the goal of converting the coupled model of water-guiding tectonic entities into the FLAC3D computational model, which provides technical support for fine investigation and fusion construction of mine geological conditions and accurate prediction and prevention of mine water damage.
  • [1]
    武强. 煤矿防治水细则解读[M]. 北京:煤炭工业出版社,2018:1-4;73-74.

    WU Qiang. Interpretation of detailed rules for prevention and control of water in coal mines[M]. Beijing:Coal Industry Press,2018:1-4,73-74.
    [2]
    张胜强. 我国煤矿事故致因理论及预防对策研究[D]. 杭州:浙江大学,2004:6-7.

    ZHANG Shengqiang. The study on our country's coal mine accident-causing theory and prevention countermeasures[D]. Hangzhou:Zhejiang University,2004:6-7.
    [3]
    孙喜民. 煤炭工业高质量发展方略研究与实践[J]. 煤炭工程,2019,51(1):152-156.

    SUN Ximin. Research and practice of high-quality development strategy of coal industry[J]. Coal Engineering,2019,51(1):152-156.
    [4]
    HOULDING S W. 3D geoscience modeling,computer technique for geological characterization[M]. Berlin:Spring-Verlag,1994:2-50.
    [5]
    王国法,王虹,任怀伟,等. 智慧煤矿2025情景目标和发展路径[J]. 煤炭学报,2018,43(2):295-305.

    WANG Guofa,WANG Hong,REN Huaiwei,et al. 2025 scenarios and development path of intelligent coal mine[J]. Journal of China Coal Society,2018,43(2):295-305.
    [6]
    毛善君. "高科技煤矿"信息化建设的战略思考及关键技术[J]. 煤炭学报,2014,39(8):1572-1583.

    MAO Shanjun. Strategic thinking and key technology of informatization construction of high-tech coal mine[J]. Journal of China Coal Society,2014,39(8):1572-1583.
    [7]
    吴立新,殷作如,邓智毅,等. 论21世纪的矿山:数字矿山[J]. 煤炭学报,2000,25(4):337-342.

    WU Lixin,YIN Zuoru,DENG Zhiyi,et al. Research to the mine in the 21st century:Digital mine[J]. Journal of China Coal Society,2000,25(4):337-342.
    [8]
    ANOWAR H M,IBRAHIM E,ABDULHAMEED A S. Cooperative Vehicle positioning with multi-sensor data fusion and vehicular communications[J]. Wireless Networks,2019,25(3):1403-1413.
    [9]
    HECHMI M J,HACEN K,AMINE B. Targets classification based on multi-sensor data fusion and supervised learning for surveillance application[J]. Wtreless Personal Communications,2019,105(1):313-333.
    [10]
    侯恩科,吴立新,李建民,等. 三维地学模拟与数值模拟的耦合方法研究[J]. 煤炭学报,2002,33(4):388-392.

    HOU Enke,WU Lixin,LI Jianmin,et al. Study on the coupling method of three-dimensional geoscience simulation and numerical simulation[J]. Journal of China Coal Society,2002,33(4):388-392.
    [11]
    侯恩科,赵洲. 三维体元拓扑数据模型的改进与实验[J]. 煤田地质与勘探,2006,34(4):13-16.

    HOU Enke,ZHAO Zhou. Optimization and experimentation for 3D topological data model based on component[J]. Coal Geology & Exploration,2006,34(4):13-16.
    [12]
    陈建平,吕鹏,吴文,等. 基于三维可视化技术的隐伏矿体预测[J]. 地学前缘,2007,14(5):54-62.

    CHEN Jianping,LYU Peng,WU Wen,et al. Prediction of concealed orebody based on 3D visualization technology[J]. Geoscience Frontier,2007,14(5):54-62.
    [13]
    WU Qiang,XU Hua. An effective method for 3D geological modeling with multi-source data integration[J]. Computers and Geosciences,2008,34(3):35-43.
    [14]
    罗周全,吴亚斌,刘晓明,等. 基于SURPAC的复杂地质体FLAC~(3D)模型生成技术[J]. 岩土力学,2008(5):1334-1338.

    LUO Zhouquan,WU Yabin,LIU Xiaoming,et al. FLAC3D modeling for complex geologic body based on SURPAC[J]. Rock and Soil Mechanics,2008(5):1334-1338.
    [15]
    胡斌,张倬元,黄润秋,等. FLAC3D前处理程序的开发及仿真效果检验[J]. 岩石力学与工程学报,2002,21(9):1381-1391.

    HU Bin,ZHANG Zhuoyuan,HUANG Runqiu,et al. Development of FLAC3D pre-processing program and verificatsion of simulation effect[J]. Chinese Journal of Rock Mechanics and Engineering,2002,21(9):1381-1391.
    [16]
    韩崇昭,朱洪艳,段战胜,等. 多源信息融合(第二版)[M]. 北京:清华大学出版社,2010:1-14.

    HAN Chongzhao,ZHU Hongyan,DUAN Zhansheng,et al. Multi-source information fusion(second Edition)[M]. Beijing:Tsinghua University Press,2010:1-14.
    [17]
    武强,徐华. 地质建模与可视化[M]. 北京:科学出版社,2011:1-16.

    WU Qiang,XU Hua. 3D Geological modeling and virtual visualization[M]. Beijing:Science Press,2011:1-16.
    [18]
    潘结南,孟召平,甘莉. 矿山三维地质建模与可视化研究[J]. 煤田地质与勘探,2005,33(1):16-18.

    PAN Jienan,MENG Zhaoping,GAN Li. Study on 3D geoscience modeling and visualization of mines[J]. Coal Geology & Exploration,2005,33(1):16-18.
    [19]
    科瓦列夫斯基. 基于地质统计学的地质建模[M]. 刘应如,曹正林,郑红军,等译. 北京:石油工业出版社,2014:1-20. KOVALEVSKIY E. Geological modeling on the base of geostatistics[M]. Beijing:Petroleum Industry Press,2014.
    [20]
    林杭,曹平,李江腾,等. 基于SURPAC的FLAC3D三维模型自动构建[J]. 中国矿业大学学报,2008,37(3):339-342.

    LIN Hang,CAO Ping,LI Jiangteng,et al. Automatic generation of FLAC3D model based on SURPAC[J]. Journal of China University of Mining & Technology,2008,37(3):339-342.
    [21]
    BASU A,LI X. Computer Vision:Systems,theory and applications[M]. World Scientific,1993.
    [22]
    万江平,严明. 用Java语言开发专家系统[J]. 计算机应用研究,2000,17(5):62-64.

    WAN Jiangping,YAN Ming. Develop expert system with Java language[J]. Computer Application Research,2000,17(5):62-64.
    [23]
    张浩,骆正虎,杨敬安. 基于Java语言的移动Agent开发平台[J]. 合肥工业大学学报(自然科学版),2001,24(5):907-912.

    ZHANG Hao,LUO Zhenghu,YANG Jing'an. Mobile Agent development platform based on Java language[J]. Journal of Hefei University of Technology(Natural Science Edition),2001,24(5):907-912.
    [24]
    王双明,孙强,乔军伟,等. 论煤炭绿色开采的地质保障[J]. 煤炭学报,2020,45(1):8-15.

    WANG Shuangming,SUN Qiang,QIAO Junwei,et al. Geological guarantee of coal green mining[J]. Journal of China Coal Society,2020,45(1):8-15.
    [25]
    王国法,杜毅博. 智慧煤矿与智能化开采技术的发展方向[J]. 煤炭科学技术,2019,47(1):1-10.

    WANG Guofa,DU Yibo. Development direction of intelligent coal mine and intelligent mining technology[J]. Coal Science and Technology,2019,47(1):1-10.
  • Related Articles

    [1]YANG Yulong, CAO Weihua, GAN Chao, LI Yupeng, WU Min. Advances in research on stratigraphic characteristic parameter modeling and safety early warning for deep geological drilling processes[J]. COAL GEOLOGY & EXPLORATION, 2024, 52(10): 195-206. DOI: 10.12363/issn.1001-1986.24.05.0341
    [2]SONG Kun, RUAN Di, LYU Honglin, HAN Luyang, HUANG Haifeng. Material point method-based simulation and dynamic characteristic analysis of instability-induced landslide movement: A case study of the Yanguan landslide in the Three Gorges Reservoir area[J]. COAL GEOLOGY & EXPLORATION, 2023, 51(7): 140-150. DOI: 10.12363/issn.1001-1986.22.11.0897
    [3]LIU Shilei, ZHANG Ying, YUE Jianhua. Application of Simulink in transient process analysis of transient electromagnetic field[J]. COAL GEOLOGY & EXPLORATION, 2020, 48(2): 209-215. DOI: 10.3969/j.issn.1001-1986.2020.02.031
    [4]LOU Yili, WU Zhonghu, WANG Anli, ZUO Yujun, LIU Hao, SUN Wenjibin. Numerical simulation of rupture process of shale under action of fluid-solid coupling[J]. COAL GEOLOGY & EXPLORATION, 2020, 48(1): 105-112. DOI: 10.3969/j.issn.1001-1986.2020.01.014
    [5]CHEN Da, XUE Xicheng, WEI Jiangbo. Simulation of failure process of Liujian landslide based on PFC2D[J]. COAL GEOLOGY & EXPLORATION, 2018, 46(4): 115-121. DOI: 10.3969/j.issn.1001-1986.2018.04.019
    [6]HUANG Lei, LI Xi'an, CAI Weibin, QIAO Lu. Simulation of collapsible characteristics of Malan loess in Yan'an new area by PFC2D[J]. COAL GEOLOGY & EXPLORATION, 2017, 45(3): 119-124. DOI: 10.3969/j.issn.1001-1986.2017.03.022
    [7]LIU Wei-tao, JI Bao-jing, HE Shou-ying. Simulation of the distortion and destruction process of fractured fault zone[J]. COAL GEOLOGY & EXPLORATION, 2009, 37(3): 33-37. DOI: 10.3969/j.issn.1001-1986.2009.03.008
    [8]LIU Hong-shuai, TANG Li-qiang, BO Jing-shan, FENG Zhi-ren. Elastic-viscoplastic analysis of explicit FEM for simulating wave motions in rock mass[J]. COAL GEOLOGY & EXPLORATION, 2009, 37(1): 38-42,47.
    [9]TANG Fang-tou, ZHANG Pei-zhen, DENG Zhi-hui, WANG Chun-yong, GAN Wei-jun. Present motion character of main fault zones in North China[J]. COAL GEOLOGY & EXPLORATION, 2005, 33(1): 4-6.
    [10]JIN De-wu, NIU Fu-jun, CHEN Zhi-xin, NI Wan-kui. Coupled mechanism for seepage,stress,temperature field of permafrost during freezing-thawing process[J]. COAL GEOLOGY & EXPLORATION, 2003, 31(5): 40-42.
  • Cited by

    Periodical cited type(8)

    1. 李新旺,马素英,刘淼,付银环,徐宏斌,赵雪朋. 河北省深层地下水回补研究. 中国水利. 2024(07): 28-33 .
    2. 刘晓秀,曾一凡,武强,孟世豪,梁季月,侯柱平. 基于绿色生态开采的我国西部生态脆弱矿区“煤-水-热”共采范式(英文). Engineering. 2024(07): 209-222 .
    3. 曾一凡,刘晓秀,武强,梁季月. 双碳背景下“煤-水-热”正效协同共采理论与技术构想. 煤炭学报. 2023(02): 538-550 .
    4. 郭艳,桂和荣,魏久传,胡满聪,郭祥东,聂锋,陈永青,解建,叶爽,李俊. 区域注浆扰动下渗流场-化学场演化及耦合作用. 煤炭科学技术. 2023(07): 152-166 .
    5. 马莲净,王颂,杜松,赵宝峰,张阳,卢才武. 宁东煤田枯竭油层回注存储高矿化度矿井水技术思路. 煤炭科学技术. 2023(12): 149-158 .
    6. 张雷,徐智敏,袁慧卿,孙亚军,郭娟,陈天赐,李鑫,刘琪. 深部开采高盐矿井水减排治理技术体系构建与实现. 煤炭科学技术. 2023(12): 208-219 .
    7. 李超峰,王疆霞,刘峰,刘基,胡扬,徐中华. 彬长矿区含水层地下水水化学演化规律研究. 煤炭科技. 2022(04): 102-110 .
    8. 苏旭楠. 刘家沟组作为矿井水深部转移存储目的层可行性分析. 中国煤炭地质. 2022(S2): 47-53 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (127) PDF downloads (13) Cited by(9)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return