SHAN Rui, ZHANG Guangzhong, WANG Qianyao, YANG Guangming. High density 3D seismic data-driven comprehensive interpretation method of magmatic intrusion zones in coal seams and its application[J]. COAL GEOLOGY & EXPLORATION, 2020, 48(6): 72-79. DOI: 10.3969/j.issn.1001-1986.2020.06.010
Citation: SHAN Rui, ZHANG Guangzhong, WANG Qianyao, YANG Guangming. High density 3D seismic data-driven comprehensive interpretation method of magmatic intrusion zones in coal seams and its application[J]. COAL GEOLOGY & EXPLORATION, 2020, 48(6): 72-79. DOI: 10.3969/j.issn.1001-1986.2020.06.010

High density 3D seismic data-driven comprehensive interpretation method of magmatic intrusion zones in coal seams and its application

Funds: 

National Key R&D Program of China (2018YFC0807804,2018YFC0807806)

More Information
  • Received Date: November 03, 2020
  • Revised Date: November 15, 2020
  • Published Date: December 24, 2020
  • Magmatic rock intrusion is present in most of the main coal seams in Huaibei mining area, is characterized by multi-layer intrusion, wide spatial distribution and complex intrusion modes, etc. Conventional seismic exploration can't guarantee the interpretation accuracy. Focused on the problem, the seismic response characteristics of different magmatic intrusive modes are compared and analyzed based on the high density 3D seismic exploration. The seismic multi-attributes analysis technology based on rock physical property difference, the seismic facies analysis technology based on waveform difference and the log constrained impedance inversion technology based on impedance difference are comprehensively utilized to identify and interpret the magmatic intrusive area, and the spatial distribution are carved in detail. The results show that the log constrained impedance inversion has high precision in thin layered magmatic intrusive area, and the prediction of thick layered magmatic intrusive area can rely on seismic attribute analysis and seismic facie analysis. Therefore, according to the coal seam distribution and the characteristics of intrusive magmatic rock, the seismic attribute technology, seismic facies technology and seismic impedance inversion technology can be used comprehensively to effectively depict the distribution of magmatic rock in coal seam.
  • [1]
    张晓磊.巨厚岩浆岩下煤层瓦斯赋存特征及其动力灾害防治技术研究[D]. 徐州:中国矿业大学,2015.

    ZHANG Xiaolei. Research on coal seam occurance and its dynamic disasters prevention and control technologies under an extremely thick magmatic rock[D]. Xuzhou:China University of Mining and Technology,2015.
    [2]
    SHINJINI S,RATAN K. Effect of igneous intrusive on coal microconstituents:Study from an Indian Gondwana coalfield[J]. International Journal of Coal Geology,2011,85(1):161-167.
    [3]
    CHRISTOPHER I U.Seismic recognition of igneous rocks of the deepwater Taranaki Basin,New Zealand,and their distribution[J].New Zealand Journal of Geology and Geophysics,2020,63(2):190-209.
    [4]
    吴海波,董守华,黄亚平,等. 煤层火成岩侵入的反射波特征研究与应用[J]. 地球物理学进展,2014,29(6):2779-2784.

    WU Haibo,DONG Shouhua,HUANG Yaping,et al.Characteristics study and application of coal seam igneous intrusion zones reflected waves[J].Progress in Geophysics,2014,29(6):2779-2784.
    [5]
    孙学凯,崔若飞.地震相分析在探测煤层中火成岩侵入范围的应用[J]. 煤田地质与勘探,2010,38(5):58-60.

    SUN Xuekai,CUI Ruofei. Application of seismic faces analysis in detecting the magmatic intrusion zones[J].Coal Geology & Exploration,2010,38(5):58-60.
    [6]
    吴海波,董守华,黄亚平,等.基于地震属性的煤层火成岩侵入预测[J]. 地球物理学进展,2015,30(3):1376-1381.

    WU Haibo,DONG Shouhua,HUANG Yaping,et al.Prediction of coal seam igneous intrusion based on seismic attributes[J].Progress in Geophysics,2015,30(3):1376-1381.
    [7]
    戴方尧,崔若飞,陈同俊. 多参数岩性反演在煤田地震勘探中的应用[J]. 物探与化探,2013,37(1):104-107.

    DAI Fangyao,CUI Ruofei,CHEN Tongjun.The application of multiple parameters lithological inversion to coalfield seismic exploration[J]. Geophysical and Geochemical Exploration,2013,37(1):104-107.
    [8]
    刘鹏.岩性柱状数据重构拟密度反演预测煤层岩浆岩分布:以祁南煤矿103采区为例[J]. 工程地球物理学报,2019,16(4):500-507.

    LIU Peng.Prediction of magmatic intrusion by using quasi-density inversion technique based on lithological columnar data reconstruction:Taking mining area 103 of Qinan Coal mine as an example[J].Chinese Journal of Engineering Geophysics,2019,16(4):500-507.
    [9]
    李江,智敏,朱书阶. 岩浆岩地震波阻抗反演与厚度预测[J].物探与化探,2020,44(5):1233-1238.

    LI Jiang,ZHI Min,ZHU Shujie.The fictitious P-impedance inversion and thickness prediction of magmatic rock[J].Geophysical and Geochemical Exploration,2020,44(5):1233-1238.
    [10]
    崔大尉,于景邨,戴方尧. 岩浆岩侵入煤层范围的地震解释方法[J]. 煤田地质与勘探,2014,42(2):76-79.

    CUI Dawei,YU Jingcun,DAI Fangyao.Seismic interpretation method for the magmatic intrusion extent in coal seams[J].Coal Geology & Exploration,2014,42(2):76-79.
    [11]
    赵立明,崔若飞. 全数字高密度三维地震勘探在煤田精细构造解释中的应用[J]. 地球物理学进展,2014,29(5):2332-2336.

    ZHAO Liming,CUI Ruofei. Application of digital high-destiy seismic exploration in fine structural interpretation in coalfield[J]. Progress in Geophysics,2014,29(5):2332-2336.
    [12]
    赵立明. 淮北矿区高密度三维地震勘探岩性解释技术研究[D].徐州:中国矿业大学,2015. ZHAO Liming.Study on lithology interpretation technology of high-density 3D seismic data in huaibei mining area[D]. Xu zhou:China University of Mining and Technology,2015.
    [13]
    王琦. 全数字高密度三维地震勘探技术在淮北矿区的应用[J].煤田地质与勘探,2018,46(增刊1):41-45.

    WANG Qi.Application of all digital high density 3D seismic exploration technology in Huaibei mining area[J].Coal Geology & Exploration,2018,46(Sup.1):41-45.
    [14]
    牛跟彦. 全数字高密度三维地震勘探技术在煤矿采区的研究与应用[J]. 煤炭技术,2019,38(10):58-60.

    NIU Genyan.Application and research of all digital high density 3D seismic exploration technology in coalmine winning district[J].Coal Technology,2019,38(10):58-60.
    [15]
    王树威.全数字高密度三维地震勘探中地震属性预测煤层厚度的应用[J]. 能源与环保,2019,41(6):51-56.

    WANG Shuwei.Application on seismic attributes forecasting coal thickness of all digital high density 3D seismic exploration[J]. China Energy and Environmental Protection,2019,41(6):51-56.
    [16]
    韩文功,于静,刘学伟. 高密度三维地震勘探技术[M]. 北京:地质出版社,2017. HAN Wengong,YU Jing,LIU Xuewei. High-density 3D Seismic exploration technology[M]. Beijing:Geological Publishing House,2017.
    [17]
    程建远,聂爱兰,张鹏. 煤炭物探技术的主要进展及发展趋势[J]. 煤田地质与勘探,2016,44(6):136-141.

    CHENG Jianyuan,NIE Ailan,ZHANG Peng. Outstanding progress and development trend of coal geophysics[J]. Coal Geology & Exploration,2016,44(6):136-141.
    [18]
    宁宏晓,唐东磊,皮红梅,等. 国内陆上"两宽一高"地震勘探技术及发展[J]. 石油物探,2019,58(5):645-653.

    NING Hongxiao,TANG Donglei,PI Hongmei,et al. The technology and development of "WBH" seismic exploration in land,China[J]. Geophysical Prospecting for Petroleum,2019,2019,58(5):645-653.
    [19]
    孙丽梅."两宽一高"地震勘探技术在松辽盆地北部深层致密气储层预测中的应用[J]. 天然气地球科学,2020,31(10):1479-1488.

    SUN Limei.Application of "two wide and one high" seismic exploration technology in the prediction of deep tight gas reservoir in the north of Songliao Basin[J].Natural Gas Geoscience,2020,31(10):1479-1488.
    [20]
    代琦,崔若飞,赵立明,等. 卧龙湖矿区岩浆岩侵入煤层的综合解释[J]. 矿业安全与环保,2015,42(4):48-51.

    DAI Qi,CUI Ruofei,ZHAO Liming,et al. Integrated interpretation of magatic rock-intruded coal seam in Wolonghu Mining area[J]. Mining Safety & Environmental Protection,2015,42(4):48-51.
    [21]
    单蕊,李元杰. 地震多属性分析技术在小煤窑采空区探测中的应用研究[J]. 煤矿开采,2014,19(5):23-25.

    SHAN Rui,LI Yuanjie. Application of seismic multi-attribute analysis technology in small colliery gob detection[J]. Coal Mining Technology,2014,19(5):23-25.
    [22]
    张铁强. 地震属性及其实际数据的应用[D]. 北京:中国地质大学(北京),2010.

    ZHANG Tieqiang. Seismic atttibutes and its application to real data[D]. Beijing:China University of Geosciences(Beijing),2010.
    [23]
    祁雪梅,董守华. 地震相技术在煤层气勘探中的应用[J]. 物探与化探,2012,36(2):170-173.

    QI Xuemei, DONG Shouhua.The application of seismic facies technology to coal-bed methane exploration[J].Geophysical and Geochemical Exploration,2012,36(2):170-173.
    [24]
    左卫华,单蕊,朱伟. 岩性反演在煤层顶板砂体识别中的应用[J]. 煤田地质与勘探,2018,46(2):184-189.

    ZUO Weihua,SHAN Rui,ZHU Wei. Application of seismic lithology inversion in identifying sandstone of coalbed roof[J]. Coal Geology & Exploration,2018,46(2):184-189.
  • Related Articles

    [1]ZHAO Zhigang, ZHU Xueshen, WANG Cunwu, ZHU Yanhe, LYU Yumin, CHEN Silu, QI Yu, TIAN Yongjing. Predicting the “sweet spot” of deep coalbed methane based on resource conditions and fracability[J]. COAL GEOLOGY & EXPLORATION, 2024, 52(8): 22-31. DOI: 10.12363/issn.1001-1986.24.01.0042
    [2]SUN Bin, TIAN Wenguang, YANG Zhaobiao, YANG Minfang, LI Cunlei. Optimum selection of favorable areas for multi-layer CBM mining and reservoir characterstics in North Yunnan and Guizhou exploration area[J]. COAL GEOLOGY & EXPLORATION, 2022, 50(9): 86-95. DOI: 10.12363/issn.1001-1986.22.03.0160
    [3]LI Shuguang, WANG Chengwang, WANG Hongna, WANG Yubin, XU Fengyin, GUO Zhidong, LIU Xinwei. Reservoir forming characteristics and favorable area evaluation of deep coalbed methane in Daning-Jixian Block[J]. COAL GEOLOGY & EXPLORATION, 2022, 50(9): 59-67. DOI: 10.12363/issn.1001-1986.21.12.0842
    [4]XIANG Wenxin, SANG Shuxun, WU Zhangli, TU Bin, GUO Zhijun, HAN Sijie, ZHOU Xiaozhi, ZHOU Peiming. Characteristics of coal reservoirs and favorable areas classification and optimization of CBM planning blocks in Guizhou Province[J]. COAL GEOLOGY & EXPLORATION, 2022, 50(3): 156-164. DOI: 10.12363/issn.1001-1986.21.12.0731
    [5]LIANG Mai, TAN Xianfeng, CHEN Xianjun, WANG Jia, RAN Tian, WANG Ping, TAN Dongping, XUE Weiwei, ZENG Chunlin. Sequence stratigraphy of Wufeng-Longmaxi Formation in the southeastern Chongqing area and its geological significance[J]. COAL GEOLOGY & EXPLORATION, 2018, 46(6): 40-51. DOI: 10.3969/j.issn.1001-1986.2018.06.006
    [6]DONG Yinping, LIU Yong, SHEN Youyi, ZHU Yalong, TIAN Zhongbin, HUANG Handong. Prediction of CBM sweet spots via matching trace decomposition-based fluid activity factor[J]. COAL GEOLOGY & EXPLORATION, 2018, 46(5): 90-96,101. DOI: 10.3969/j.issn.1001-1986.2018.05.014
    [7]XU Hongwei, LI Xianqing, ZHOU Baogang, QI Shuai, ZHANG Jizhen, YANG Jie, CHEN Jinming, GAO Wenjie. Characteristics of terrestrial shale gas reservoir in Yanchang exploration area of Ordos basin[J]. COAL GEOLOGY & EXPLORATION, 2017, 45(6): 46-53. DOI: 10.3969/j.issn.1001-1986.2017.06.008
    [8]WANG Shuai, SHAO Longyi, SUN Qinping, HOU Haihai, GAO Shuang, LU Jing, SUN Bin. Characteristics of CBM reservoirs and exploration potential in Jiergalangtu sag of Erlian basin[J]. COAL GEOLOGY & EXPLORATION, 2017, 45(4): 63-69. DOI: 10.3969/j.issn.1001-1986.2017.04.011
    [9]YI Tongsheng, GAO Di. Characteristics and distribution pattern of shale gas reservoir in Longmaxi Formation in Guizhou Province[J]. COAL GEOLOGY & EXPLORATION, 2015, 43(3): 22-27,32. DOI: 10.3969/j.issn.1001-1986.2015.03.005
    [10]XU Hao, TANG Dazhen, TANG Shuhuan, ZHANG Wenzhong, ZHANG Songhang, TAO Shu, WANG Feng. Coal reservoir characteristics and prospective areas for Jurissic CBM exploitation in western Ordos basin[J]. COAL GEOLOGY & EXPLORATION, 2010, 38(1): 26-28,32. DOI: 10.3969/j.issn.1001-1986.2010.01.006

Catalog

    Article Metrics

    Article views (144) PDF downloads (18) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return