JU Pei, WANG Chuanliu. Simulation of the cutter arrangement pattern of the arc PDC drill bit[J]. COAL GEOLOGY & EXPLORATION, 2020, 48(5): 240-245. DOI: 10.3969/j.issn.1001-1986.2020.05.030
Citation: JU Pei, WANG Chuanliu. Simulation of the cutter arrangement pattern of the arc PDC drill bit[J]. COAL GEOLOGY & EXPLORATION, 2020, 48(5): 240-245. DOI: 10.3969/j.issn.1001-1986.2020.05.030

Simulation of the cutter arrangement pattern of the arc PDC drill bit

Funds: 

Science and Technology Innovation Fund Key Project of Tiandi Science and Technology Co. Ltd.(2018-TD-QN053)

More Information
  • Received Date: July 06, 2020
  • Revised Date: August 05, 2020
  • Published Date: October 24, 2020
  • When drilling in a complex heterogeneous formation, due to the limitation of bit crown shape, the cutters of each part of the bit are subjected to non-uniform force, and the cutters at the local location are subjected to large impact load, which lead to the occurrence of bit vortex. In order to solve the problem, a “multi-level force balance” cutter circumferential arrangement scheme is proposed. By establishing the rock breaking finite element simulation model of the bit, the mechanical characteristics of the cutter and the bit under three circumferential cutter distribution modes(clockwise, counterclockwise and “multi-level force balance”) are analyzed. Simulation results show that comparing with the clockwise and counterclockwise circumferential cutter arrangement modes, the load distribution of each blade is more uniform under the “multi-level force balance” cutter arrangement mode, the ability and aggression of the bit are improved, and the rock-breaking efficiency of the bit is improved by more than 28%, for the clockwise circumferential cutter arrangement mode, the lateral force of the bit is the highest and the stability of the bit is the worst; while for the counterclockwise circumferential cutter arrangement mode, the weight on bit is relatively higher, and the bit is less aggressive, the rock-breaking efficiency is the lowest. The above research results can provide a theoretical basis for the design of circumferential cutter distribution of the PDC bit. It is suggested that, in the future, the research on the cutter load distribution along the radial of the bit under the “multi-level force balance” cutter circumferential arrangement scheme should be strengthened, so as to guide the optimal design of the anti-vortex stable PDC bit.
  • [1]
    付建民,韩雪银,孙晓飞,等. PDC钻头防涡技术在砾岩地层中的应用[J]. 石油钻采工艺,2012,34(增刊1):5-8.

    FU Jianmin,HAN Xueyin,SUN Xiaofei,et al. Application of anti-whirl technique for PDC bit to drill through conglomerate layer[J]. Oil Drilling & Production Technology,2012,34(Sup.1):5-8.
    [2]
    KOVALYSHEN Y. A new model of bit Whirl[C]//IADC/SPE Asia Pacific Drilling Technology Conference and Exhibition,Tianjin,China,July 9-11,2012.
    [3]
    CLAYTON R I,IVIE B S. Development of whirl resistant PDC bits[C]//Latin American/Caribbean Petroleum Engineering Conference,Buenos,Aires,Argentina,April 27-29,1934.
    [4]
    CLEGG J M. An analysis of the field performance of antiwhirl PDC bits[C]//IADC/SPE Drilling Conference,New Orieans,Louislana,February 18-21,1992.
    [5]
    邹德永,王瑞和.刀翼式PDC钻头的侧向力平衡设计[J]. 石油大学学报(自然科学版),2005,39(2):42-44.

    ZOU Deyong,WANG Ruihe. Lateral force balancing design of blade PDC bits[J]. Journal of the University of Petroleum(Edition of Natural Science),2005,39(2):42-44.
    [6]
    李辉,张鹏,马驰,等. 基于蚁群粒子群混合算法的PDC钻头侧向力平衡优化[J].钻采工艺,2009,32(2):58-60.

    LI Hui,ZHANG Peng,MA Chi,et al. Optimization of lateral force balance of PDC bits based on ant colony particle swarm hybrid algorithm[J]. Drilling & Production Technology,2009,32(2):58-60.
    [7]
    宋洵成,邹德永. 采用遗传算法的PDC钻头侧向力平衡优化设计[J]. 中国石油大学学报(自然科学版),2006,30(4):50-52.

    SONG Xuncheng,ZOU Deyong. Optimization design of lateral force balance of PDC bits by genetic algorithm[J]. Journal of China University of Petroleum(Edition of Natural Science),2006,30(4):50-52.
    [8]
    杨庆理. PDC钻头在井底的涡动分析研究[J].石油矿场机械,2007,36(5):34-36.

    YANG Qingli. The study of the PDC anti whirling[J]. Oil Field Equipment,2007,36(5):34-36.
    [9]
    GALARRAGA C,FIERRO J C,RIYAMI I A,et al. An unconventional fixed cutter cutting structure layout to drill through hard,abrasive conglomerates in deep wells-a case study[C]//Abu Dhabi International Petroleum Exhibition & Conference,Abu Dhabi,UAE,November 7-10,2016.
    [10]
    El-GAYAR M,ALI T S,TALAF M A. Multilevel force-balanced cutting structure layout helped solve PDC bit dullness issue resulting from geosteering in thin reservoirs[C]//SPE Bergen One Day Seminar,Bergen,Norway,April 5,2017.
    [11]
    CHEN S,ARFELE R,ANDERL S,et al. A new theory on cutter layout for improving PDC-bit performance in hard-and transit-formation drilling[J]. SPE Drilling & Completion,2013,28(4):338-349.
    [12]
    ZHU Xiaohua,DAN Zhaowang. Numerical simulation of rock breaking by PDC bit in hot dry rocks[J]. Natural Gas Industry B,2019,6(6):619-628.
    [13]
    NAGASO M,MILADA H,TAKEKAWA J. The role of rock strength heterogeneities in complex hydraulic fracture formation-numerical simulation approach for the comparison to the effects of brittleness[J]. Journal of Petroleum Science and Engineering,2018,172:572-587.
    [14]
    夏毅敏,吴元,郭金成,等. TBM边缘滚刀破岩机理的数值研究[J]. 煤炭学报,2014,39(1):172-178.

    XIA Yimin,WU Yuan,GUO Jincheng,et al. Numerical simulation of rock-breaking mechanism by gage disc cutter of TBM[J]. Journal of China Coal Society,2014,39(1):172-178.
    [15]
    况雨春,张明明,冯明,等. PDC齿破岩仿真模型与全钻头实验研究[J]. 地下空间与工程学报,2018,14(5):1218-1225.

    KUANG Yuchun,ZHANG Mingming,FENG Ming,et al. Simulation model of PDC tooth cutting rock and experimental research on the bit[J]. Chinese Journal of Underground Space and Engineering,2018,14(5):1218-1225.
    [16]
    李浩哲,姜在炳,舒建生,等. 水力裂缝在煤岩界面处穿层扩展规律的数值模拟[J]. 煤田地质与勘探,2020,48(2):106-113.

    LI Haozhe,JIANG Zaibing,SHU Jiansheng,et al. Numerical simulation of layer-crossing propagation behavior of hydraulic fractures at coal-rock interface[J]. Coal Geology & Exploration,2020,48(2):106-113.
    [17]
    JU Pei. Rock breaking mechanism analysis and structure design of the conical PDC cutter based on finite element method[J]. Engineering Letters,2019,27(1):75-80.
    [18]
    JU Pei. Cutter load distribution analysis and crown shape optimal design of complex curved PDC bit[J]. Journal of Engineering and Technological Science,2019,51(1):14-27.
    [19]
    居培,王传留.新型锥形PDC齿犁削破岩理论研究[J].煤田地质与勘探,2019,47(2):212-216.

    JU Pei,WANG Chuanliu. Theoretical research on the ploughing rock breaking properties of new conical PDC cutter[J]. Coal Geology & Exploration,2019,47(2):212-216.
    [20]
    ZHANG Chunliang,YANG Yingxin,LIN Min,et al. Research on rock-breaking mechanism of cross-cutting PDC bit[J]. Journal of Petroleum Science & Engineering,2018,161:657-666.
  • Related Articles

    [1]WANG Xinyu, WANG Cheng, MAO Yurong, YAN Liangjun, ZHOU Lei, GAO Wenlong. 3D forward modeling of DC resistivity method based on finite element with mixed grid[J]. COAL GEOLOGY & EXPLORATION, 2022, 50(5): 136-143. DOI: 10.12363/issn.1001-1986.21.06.0338
    [2]XU Xing, WENG Ling, LI Shiqiang, LIU Guoqiang. The influence of grounding grid on electromagnetic detection of goaf[J]. COAL GEOLOGY & EXPLORATION, 2019, 47(5): 213-219. DOI: 10.3969/j.issn.1001-1986.2019.05.030
    [3]WANG Chaowen, PENG Xiaolong, FENG Ning, MA Jingjing, DENG Peng, ZHU Suyang. Vertical grid optimization of numerical simulation of coalbed methane reservoir[J]. COAL GEOLOGY & EXPLORATION, 2018, 46(5): 117-122. DOI: 10.3969/j.issn.1001-1986.2018.05.018
    [4]YUE Xiaopeng, BAI Chaoying, YUE Chongwang. Accuracy analysis of elastic wave field simulation based on high-order staggered grid finite difference scheme[J]. COAL GEOLOGY & EXPLORATION, 2017, 45(1): 125-130. DOI: 10.3969/j.issn.1001-1986.2017.01.025
    [5]ZHOU Weixi, CHEN Yuhua, YANG Yongguo, LUO Jinhui. 3D modeling and visualization of coal reservoir based on corner-point grid[J]. COAL GEOLOGY & EXPLORATION, 2016, 44(5): 53-57. DOI: 10.3969/j.issn.1001-1986.2016.05.010
    [6]YUE Chongwang, WANG Fei. The simulation of acoustic wave propagation in the borehole surrounded by vertical transversely isotropic (VTI) media using staggered-grid high-order finite-difference method[J]. COAL GEOLOGY & EXPLORATION, 2016, 44(4): 125-131. DOI: 10.3969/j.issn.1001-1986.2016.04.024
    [7]HOU Shining, XUE Haifei, DONG Shouhua, YU Pengfei, ZHI Min. Forward modeling of Rayleigh wave exploration in geologically complicated areas[J]. COAL GEOLOGY & EXPLORATION, 2010, 38(6): 66-70. DOI: 10.3969/j.issn.1001-1986.2010.06.014
    [8]QIAN Jin, CUI Ruofei, CHEN Tongjun. Anisotropic numerical simulation of coal-bearing strata with finite-difference[J]. COAL GEOLOGY & EXPLORATION, 2010, 38(2): 63-67. DOI: 10.3969/j.issn.1001-1986.2010.02.016
    [9]YANG Tianchun, ZHU Ziqiang, ZHOU Yong. Finite-difference modeling of Rayleigh wave and drawing of seismograms in Matlab environment[J]. COAL GEOLOGY & EXPLORATION, 2010, 38(1): 62-65,70. DOI: 10.3969/j.issn.1001-1986.2010.01.015
    [10]LI Gui-hua, ZHU Guang-ming, LI Gui-liang. Wave field characteristics of seismic survey in coal mine roadway[J]. COAL GEOLOGY & EXPLORATION, 2009, 37(5): 54-56,60. DOI: 10.3969/j.issn.1001-1986.2009.05.013
  • Cited by

    Periodical cited type(5)

    1. 李圣林,张平松,姬广忠,郭立全. 随掘地震超前探测掘进机震源信号的复合干涉处理研究. 采矿与安全工程学报. 2022(02): 305-316 .
    2. 计子琦,张学强,张海江,查华胜,梅欢,程婷婷. 基于VMD的随掘地震超前探测信号谱白化方法研究. CT理论与应用研究. 2021(02): 148-160 .
    3. 王云宏,王保利,程建远,崔伟雄,金丹. 孔–巷联合随采地震相关时差层析成像. 煤田地质与勘探. 2021(03): 199-204 . 本站查看
    4. 王保利 ,程建远 ,崔伟雄 ,王云宏 ,金丹 ,张唤兰 . 采煤工作面随采地震探测技术研究进展——以贵州岩脚矿12701工作面为例. 煤炭学报. 2021(S1): 406-413 .
    5. 张唤兰,王保利. 基于分段波形互相关的井下随采地震数据成像. 煤田地质与勘探. 2020(04): 29-33+40 . 本站查看

    Other cited types(3)

Catalog

    Article Metrics

    Article views (224) PDF downloads (14) Cited by(8)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return