Citation: | YANG Yu, XU Shuanhai, ZHANG Hao, HAN Yongliang, ZHANG Weidong. Effect of thermally conductive filler on thermal conductivity of cementing materials in geothermal wells[J]. COAL GEOLOGY & EXPLORATION, 2020, 48(5): 182-189. DOI: 10.3969/j.issn.1001-1986.2020.05.022 |
[1] |
WANG Kai,YUAN Bin,JI Guomin,et al. A comprehensive review of geothermal energy extraction and utilization in oilfields[J]. Journal of Petroleum Science and Engineering,2018,168:465-477. doi:10.1016/j. petrol. 2018.05.012.
|
[2] |
王贵玲,张薇,梁继运,等. 中国地热资源潜力评价[J]. 地球学报,2017,38(4):449-459.
WANG Guiling,ZHANG Wei,LIANG Jiyun,et al. Evaluation of geothermal resources potential in China[J]. Acta Geoscientica Sinica,2017,38(4):449-459.
|
[3] |
刘开伟,孙道胜,王爱国,等. 硫酸盐环境下灌浆材料长龄期力学性能及微观结构分析[J]. 材料科学与工程学报,2018,36(3):403-407.
LIU Kaiwei,SUN Daosheng,WANG Aiguo,et al. Mechanical strength and microstructure of grouting materials with long-term immersion in sodium sulfate solution[J]. Journal of Materials Science & Engineering,2018,36(3):403-407.
|
[4] |
高萌. 腐蚀环境中水泥基富水充填材料劣化机理研究[D]. 北京:北京科技大学,2017. GAO Meng. Study on the deterioration mechanism of cement-based rich-water filling material in corrosive environment[D]. Beijing:University of Science and Technology Beijing,2017.
|
[5] |
岳家平,徐翔,李早元,等. 高温大温差固井水泥浆体系研究[J]. 钻井液与完井液,2012,29(2):59-62.
YUE Jiaping,XU Xiang,LI Zaoyuan,et al. Research on high temperature and large temperature difference cement slurry system[J]. Drilling Fluid & Completion Fluid,2012,29(2):59-62.
|
[6] |
冯建月,郑秀华,李小杰,等. 高温地热井微珠低密度水泥体系设计与性能研究[J]. 探矿工程(岩土钻掘工程),2017,44(增刊1):99-103.
FENG Jianyue,ZHENG Xiuhua,LI Xiaojie,et al. Design and performance study on bead low density cement system for high temperature geothermal well[J]. Exploration Engineering(Rock & Soil Drilling and Tunneling),2017,44(Sup.1):99-103.
|
[7] |
SUGAMA T,CARCIELLO N. Sodium metasilicate-modified lightweight high alumina cements for use as geothermal well-cementing materials[J]. Advanced Cement Based Materials,1996,3(2):45-53.
|
[8] |
王楚峰,王瑞和,杨焕强,等. 煤层气泡沫水泥浆固井工艺技术及现场应用[J]. 煤田地质与勘探,2016,44(2):116-120.
WANG Chufeng,WANG Ruihe,YANG Huanqiang,et al. Cementing technology of foam cement slurry for coalbed methane well and its application[J]. Coal Geology & Exploration,2016,44(2):116-120.
|
[9] |
郑秀华,司刚平,周复宗,等. 地源热泵换热孔灌浆材料导热性能实验研究[J]. 水文地质工程地质,2006(6):101-103.
ZHENG Xiuhua,SI Gangping,ZHOU Fuzong,et al. Experimental study on thermal conductivity of grouting material for heat exchange hole of ground source heat pump[J]. Hydrogeology & Engineering Geology,2006(6):101-103.
|
[10] |
刘嘉涵,徐世烺,曾强. 基于多尺度细观力学方法计算水泥基材料的导热系数[J]. 建筑材料学报,2018,21(2):293-298.
LIU Jiahan,XU Shilang,ZENG Qiang. An investigation of thermal conductivity of cement-based composites with multi-scale micromechanical method[J]. Journal of Building Materials,2018,21(2):293-298.
|
[11] |
CAI Wenzhong,TU Shantung,TAO Guoliang. Thermal conductivity of PTFE composites with three-dimensional randomly distributed fillers[J]. Journal of Thermoplastic Composite Materials,2005,18(3):241-253.
|
[12] |
刘巧玲. 碳纳米管增强水泥基复合材料多尺度性能及机理研究[D]. 南京:东南大学,2015. LIU Qiaoling. Multi-scale properties and mechanism of carbon nanotubes/cement nanocomposites[D]. Nanjing:Southeast University,2015.
|
[13] |
曾鞠庆,徐亦冬,潘志宏,等. 氧化石墨烯水泥基复合材料的流动性、力学性能及其作用机理探究[J]. 江苏科技大学学报(自然科学版),2019,33(3):126-130.
ZENG Juqing,XU Yidong,PAN Zhihong,et al. Preparation and mechanism of graphite oxide reinforced cement based composites[J]. Journal of Jiangsu University of Science and Technology(Natural Science Edition),2019,33(3):126-130.
|
[14] |
孙杰,魏树梅. 碳纤维增强水泥基复合材料的制备及其性能研究[J]. 新型建筑材料,2018,45(10):61-64.
SUN Jie,WEI Shumei. Study on the preparation and properties of carbon fiber reinforced cement matrix composites[J]. New Building Materials,2018,45(10):61-64.
|
[15] |
LI An,ZHANG Cong,ZHANG Yangfei. Thermal conductivity of grapheme-polymer composites:Mechanisms,properties,and applications[J]. Polymers,2017,9(9):437-453.
|
[16] |
TOBERER E S,BARANOWSKI L L,DAMES C. Advances in thermal conductivity[J]. Annual Review of Materials Research,2012,42:179-209.
|
[17] |
YANG Xutong,LIANG Chaobo,MA Tengbo,et al. A review on thermally conductive polymeric composites:Classification, measurement,model and equations,mechanism and fabrication methods[J]. Advanced Composites and Hybrid Materials,2018,1(2):207-230.
|
[18] |
DE LARRARD F,SEDRAN T. Optimization of ultra-high-performance concrete by the use of a packing model[J]. Cement and Concrete Research,1994,24(6):997-1009.
|
[19] |
王志强,朱伯铨,方斌祥,等. 不同粒度的鳞片石墨对低碳镁碳耐火材料性能的影响[J]. 材料导报,2008,22(9):139-141.
WANG Zhiqiang,ZHU Boquan,FANG Binxiang,et al. Effect of particle size of flake graphite on performance of low-carbon MgO-C refractories[J]. Materials Reports,2008,22(9):139-141.
|
[20] |
LI Shasha,QI Shuhua,LIU Nailiang,et al. Study on thermal conductive BN/novolac resin composites[J]. Thermochimica Acta,2011,523(2):111-115.
|
[1] | ZHENG Mingming, WU Zurui, YAN Shichun, HU Yunpeng, HE Juan, ZHANG Yawei, XIONG Liang, ZHU Chengtao. Impacts and regulation mechanisms of phase-change wall microspheres on cement slurry performance in well cementing[J]. COAL GEOLOGY & EXPLORATION, 2024, 52(11): 183-191. DOI: 10.12363/issn.1001-1986.24.05.0342 |
[2] | JIA Hailiang, ZHU Zixian, ZHOU Yang, SUN Qiang. Heat conduction performance and transfer mechanism of sand-barite powder backfill materials[J]. COAL GEOLOGY & EXPLORATION, 2022, 50(11): 162-173. DOI: 10.12363/issn.1001-1986.22.03.0192 |
[3] | YANG Xian, LU Wei, JIN Xin, CHEN Juan, FENG Xingfa. Fractal theory-based seepage model of Hershel-Bulkley fluid in porous medium[J]. COAL GEOLOGY & EXPLORATION, 2020, 48(3): 122-127. DOI: 10.3969/j.issn.1001-1986.2020.03.018 |
[4] | ZHANG Hao, XU Shuanhai, YANG Yu, HAN Yongliang, ZHANG Weidong, LI Yongqiang. Influencing factors of thermal conductivity of cementing materials for geothermal wells[J]. COAL GEOLOGY & EXPLORATION, 2020, 48(2): 195-201. DOI: 10.3969/j.issn.1001-1986.2020.02.029 |
[5] | CHEN Yuanjiang, JIANG Zhiqiang, TAN Zhiren. Optimization of surface contact-based thermal conductivity model of cemented particles[J]. COAL GEOLOGY & EXPLORATION, 2019, 47(6): 153-158,166. DOI: 10.3969/j.issn.1001-1986.2019.06.023 |
[6] | DONG Donglin, LI Xiang, LIN Gang, BIAN Jianling, CAO Chenglong, WU Heng. Identification model of the independence right-fuzzy variable theory of water inrush source[J]. COAL GEOLOGY & EXPLORATION, 2019, 47(5): 48-53. DOI: 10.3969/j.issn.1001-1986.2019.05.007 |
[7] | YU Pengfei, DONG Shouhua, YANG Xiaohui, XUE Haifei, CHENG Yan. Technology for detection of coal seam discontinuity based on catastrophe theory[J]. COAL GEOLOGY & EXPLORATION, 2011, 39(1): 57-60. DOI: 10.3969/j.issn.1001-1986.2011.01.013 |
[8] | XU Gang, DU Wenfeng, JI Chaohui. Evaluation method of coalbed methane reservoirs based on evidence theory[J]. COAL GEOLOGY & EXPLORATION, 2010, 38(4): 30-33,37. DOI: 10.3969/j.issn.1001-1986.2010.04.007 |
[9] | BO Guan-jun, WU Han-ning, ZHAO Xi-gang, WANG Jing-hua. Application of catastrophe theory in seismic data interpretation[J]. COAL GEOLOGY & EXPLORATION, 2007, 35(1): 67-70. |
[10] | FENG Li-jun. Acquisition of mine water inrush rules based on Rough Set Theory[J]. COAL GEOLOGY & EXPLORATION, 2003, 31(1): 38-41. |