ZHANG Hao, XU Shuanhai, YANG Yu, HAN Yongliang, ZHANG Weidong, LI Yongqiang. Influencing factors of thermal conductivity of cementing materials for geothermal wells[J]. COAL GEOLOGY & EXPLORATION, 2020, 48(2): 195-201. DOI: 10.3969/j.issn.1001-1986.2020.02.029
Citation: ZHANG Hao, XU Shuanhai, YANG Yu, HAN Yongliang, ZHANG Weidong, LI Yongqiang. Influencing factors of thermal conductivity of cementing materials for geothermal wells[J]. COAL GEOLOGY & EXPLORATION, 2020, 48(2): 195-201. DOI: 10.3969/j.issn.1001-1986.2020.02.029

Influencing factors of thermal conductivity of cementing materials for geothermal wells

Funds: 

Science and Technology Innovation Fund Key Project of Tiandi Science and Technology Co. Ltd.(2018TDZD017)

More Information
  • Received Date: December 15, 2019
  • Revised Date: February 24, 2020
  • Published Date: April 24, 2020
  • The thermal conductivity of cementing materials is one of the factors that affect the heat removal effect of geothermal wells. In order to improve the thermal conductivity of cementing materials for geothermal wells, orthogonal test was used to study the thermal conductivity of cementing materials based on the AHP-CRITIC mixed weighting method and range analysis. The results show that the thermal conductivity of cementing materials can be improved by adding natural flake graphite, iron powder and quartz sand. The content of graphite and the ratio of water to solid are the primary and secondary factors that affect the comprehensive properties of cementing materials. With the increase of graphite content, the thermal conductivity, the 48 hours compressive strength and the fluidity decreased. The results show that the optimal mix ratio of high thermal conductivity cementing materials is:water solid ratio is 0.44, the amount of graphite, iron powder and quartz sand accounted for 7.5%, 3%, and 2% of the cement mass, respectively, its thermal conductivity can reach 1.87 W/(m·K), which is about 70% higher than conventional cementing materials. It can provide reference for the efficient development and utilization of geothermal energy.
  • [1]
    WANG Kai,YUAN Bin,JI Guomin,et al. A comprehensive review of geothermal energy extraction and utilization in oilfields[J]. Journal of Petroleum Science and Engineering,2018,168:465-477.
    [2]
    多吉. 钻获干热岩体推进地热发电[J]. 科技导报,2015,33(19):1.

    DUO Ji. Drilling dry hot rock to promote geothermal power generation[J]. Science & Technology Review,2015,33(19):1.
    [3]
    自然资源部中国地质调查局等. 《中国地热能发展报告(2018)》[R]. 北京:中国石化出版社,2018.

    China Geologic Survey,et al. China geothermal energy development report[R]. Beijing:China Petrochemical Press,2018.
    [4]
    王贵玲,张薇,梁继运,等. 中国地热资源潜力评价[J]. 地球学报,2017,38(4):449-459.

    WANG Guiling,ZHANG Wei,LIANG Jiyun,et al. Evaluation of geothermal resources potential in China[J]. Acta Geoscientica Sinica,2017,38(4):449-459.
    [5]
    张明昌. 固井工艺技术[M]. 北京:中国石化出版社,2016.

    ZHANG Mingchang. Cementing technology[M]. Beijing:China Petrochemical Press,2016.
    [6]
    杨世铭,陶文铨. 传热学[M]. 北京:高等教育出版社,2006.

    YANG Shiming,TAO Wenquan. Heat transfer[M]. Beijing:Higher Education Press,2006.
    [7]
    KOHL T,SALTON M,RYBACH L. Data analysis of the deep borehole heat exchanger plant Weissbad(Switzerland)[C]//Proceedings World Geothermal Congress. Kyushu,Japan:ResearchGate,2000:3459-3464.
    [8]
    李瑞霞,王高升,宋先知,等. 固井水泥对同轴型换热系统取热效果影响数值分析[J]. 建筑科学,2018,34(4):36-40.

    LI Ruixia,WANG Gaosheng,SONG Xianzhi,et al. Numerical analysis of the effect of cement sheath on the heat extraction performance of coaxial borehole heat exchangers geothermal system[J]. Building Science,2018,34(4):36-40.
    [9]
    刘崇建,黄柏宗,徐同台,等. 油气井注水泥理论与应用[M]. 北京:石油工业出版社,2001.

    LIU Chongjian,HUANG Baizong,XU Tongtai,et al. Theory and application of cementing for oil & gas well[M]. Beijing:Petroleum Industry Press,2001.
    [10]
    齐奉忠,刘硕琼,沈吉云. 中国石油固井技术进展及发展建议[J]. 石油科技论坛,2017,36(1):26-31.

    QI Fengzhong,LIU Shuoqiong,SHEN Jiyun. Suggestion on CNPC cementing technological development[J]. Oil Forum, 2017,36(1):26-31.
    [11]
    丁士东,陶谦,马兰荣. 中国石化固井技术进展及发展方向[J]. 石油钻探技术,2019,47(3):41-49.

    DING Shidong,TAO Qian,MA Lanrong. Progress,outlook,and the development directions at Sinopec in cementing technology progress[J]. Petroleum Drilling Techniques,2019,47(3):41-49.
    [12]
    王楚峰,王瑞和,杨焕强,等. 煤层气泡沫水泥浆固井工艺技术及现场应用[J]. 煤田地质与勘探,2016,44(2):116-120.

    WANG Chufeng,WANG Ruihe,YANG Huanqiang,et al. Cementing technology of foam cement slurry for coalbed methane well and its application[J]. Coal Geology & Exploration,2016,44(2):116-120.
    [13]
    陈春,钱春香,陈惠苏,等. 水泥基保温材料导热系数的模型研究[J]. 建筑材料学报,2009,12(3):348-351.

    CHEN Chun,QIAN Chunxiang,CHEN Huisu,et al. Model study of thermal conductivity of cement based thermal insulation materials[J]. Journal of Building Materials,2009,12(3):348-351.
    [14]
    张伟平,童菲,邢益善,等. 混凝土导热系数的试验研究与预测模型[J]. 建筑材料学报,2015,18(2):183-189.

    ZHANG Weiping,TONG Fei,XING Yishan,et al. An investigation of thermal conductivity of cement-based composites with multi-scale micromechanical method[J]. Journal of Building Materials,2015,18(2):183-189.
    [15]
    赵育. 高导热性混凝土细观数值模拟与工程应用[D]. 西安:长安大学,2017.

    ZHAO Yu. Mesosopic numerical simulation and engineering application of high thermal conductivity concrete[D]. Xi'an:Chang'an University,2017.
    [16]
    周仕明,李根生,王其春. 超高密度水泥浆研制[J]. 石油勘探与开发,2013,40(1):107-110.

    ZHOU Shiming,LI Gensheng,WANG Qichun. Research and preparation of ultra-heavy slurry[J]. Petroleum Exploration and Development,2013,40(1):107-110.
    [17]
    袁燊. 高密度水泥浆体系研究[D]. 青岛:中国石油大学(华东),2013.

    YUAN Shen. Research on high density cement slurry system[D]. Qingdao:China University of Petroleum(East China),2013.
    [18]
    刘竞妍,张可,王桂华. 综合评价中数据标准化方法比较研究[J]. 数字技术与应用,2018,36(6):84-85.

    LIU Jingyan,ZHANG Ke,WANG Guihua. Comparative study on data standardization methods in comprehensive evaluation[J]. Digital Technology & Application,2018,36(6):84-85.
  • Related Articles

    [1]ZHAN Xinyu, GAO Lin, ZHAO Fanghao, WANG Yongyin, LIU Ping, HAN Sen. Experimental study on proportioning of ultra-high strength similar materials for large similarity ratio model tests[J]. COAL GEOLOGY & EXPLORATION, 2023, 51(11): 109-118. DOI: 10.12363/issn.1001-1986.23.05.0237
    [2]JIA Zhichao, HUANG Huazhou, HUANG Shaobo, ZHOU Yu, WANG Bo. Evaluation of the development potential of the coalbed methane resources in mining area based on AHP-entropy method[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(2): 117-124. DOI: 10.3969/j.issn.1001-1986.2021.02.015
    [3]WEI Jiangbo, ZHAO Zhou. Analysis of geological hazard susceptibility based on the weighted certainty factor method[J]. COAL GEOLOGY & EXPLORATION, 2018, 46(6): 108-114. DOI: 10.3969/j.issn.1001-1986.2018.06.015
    [4]ZHAO Weiguang, FU Tianchi, GUO Yuliang, CAI Nian, DING Yuanda, YOU Yang. Preparation and verification of chemical plugging slurry for CBM boreholes[J]. COAL GEOLOGY & EXPLORATION, 2018, 46(5): 199-205. DOI: 10.3969/j.issn.1001-1986.2018.05.031
    [5]ZHANG Xiaoliang. Application of entropy weight method and analytic hierarchy process in evaluation of water inrush from coal seam floor[J]. COAL GEOLOGY & EXPLORATION, 2017, 45(3): 91-95. DOI: 10.3969/j.issn.1001-1986.2017.03.017
    [6]LIU Xiaoping. Analysis on influencing factors and their sensitivity for slope stability in opencast coal mine of eastern Inner Mongolia[J]. COAL GEOLOGY & EXPLORATION, 2014, 42(3): 74-77,81. DOI: 10.3969/j.issn.1001-1986.2014.03.017
    [7]LYU Wei, HU Ronghua. Influence of erosive ion on the strength of cement-soil pile based on analytic hierarchy process (AHP)[J]. COAL GEOLOGY & EXPLORATION, 2014, 42(3): 65-67. DOI: 10.3969/j.issn.1001-1986.2014.03.015
    [8]YUAN Junli. Sensitivity analysis of parameters of Rankine earth pressure based on unified strength theory[J]. COAL GEOLOGY & EXPLORATION, 2011, 39(1): 46-51. DOI: 10.3969/j.issn.1001-1986.2011.01.011
    [9]LI Rong-wei, HOU En-ke. Orthogonality analysis of sensibility on factors of slope stability in opencast coal mine[J]. COAL GEOLOGY & EXPLORATION, 2009, 37(1): 52-56.
    [10]PAN Jie-nan, CHEN Jiang-feng, XU Wen-peng. R/S analysis and fractal prediction of gas emission in coal mine[J]. COAL GEOLOGY & EXPLORATION, 2001, 29(3): 14-15.
  • Cited by

    Periodical cited type(15)

    1. 王皓,董书宁,尚宏波,王甜甜,杨建,赵春虎,张全,周振方,刘基,侯悦. 国内外矿井水处理及资源化利用研究进展. 煤田地质与勘探. 2023(01): 222-236 . 本站查看
    2. 陈陆望,胡永胜,张杰,张苗,郑剑,郑忻,张媛媛,蔡欣悦,武明辉. 华北型煤田水文地球化学勘探关键技术研究进展. 煤田地质与勘探. 2023(02): 207-219 . 本站查看
    3. 郑伟生,李伟峰. 地下水对工程建筑不良影响的反常现象原因及治理分析. 山东煤炭科技. 2023(04): 177-180 .
    4. 郭立霞. 晋城市坪上煤矿水文地质特征及水害预测防治技术. 能源与环保. 2023(09): 134-139+148 .
    5. 方刚. 榆横北区富水煤层与上覆含水层的水力联系. 科学技术与工程. 2023(29): 12465-12473 .
    6. 贾海. 区域水环境水文特性勘测技术研究. 水利技术监督. 2022(01): 129-132+168+176 .
    7. 康占忠,刘洋. 榆神矿区水文地球化学特征精细分层研究. 煤炭技术. 2022(08): 72-75 .
    8. 于洋. 三维地震勘探技术在煤矿构造勘探的应用. 内蒙古煤炭经济. 2022(21): 163-165 .
    9. 梁向阳,方刚,黄浩. 榆神矿区曹家滩井田水文地球化学特征研究. 干旱区资源与环境. 2020(05): 102-108 .
    10. 杨聘卿. 孔家沟煤矿水文地球化学特征及水源识别研究. 能源与环保. 2020(07): 120-125 .
    11. 纪卓辰,丁湘,侯恩科,蒲治国,谢朋. 纳林河二号煤矿涌水水源判别的PCA-Logistic方法. 煤田地质与勘探. 2020(05): 97-105+112 . 本站查看
    12. 徐慧,牟义,李江华,姜鹏,黎灵. 河流区域露-井联采矿区水文地质综合勘查技术研究. 煤炭科学技术. 2020(11): 191-198 .
    13. 白晶,方刚. 榆横南区魏墙煤矿工作面回采防治水安全评价. 工程技术研究. 2019(11): 238-239 .
    14. 李永涛,杨建. 基于顶板水预疏放的首采工作面涌水规律. 煤田地质与勘探. 2019(04): 104-109 . 本站查看
    15. 任鹏飞. 转角勘查区水文地质特征分析. 陕西煤炭. 2019(06): 125-130 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (186) PDF downloads (26) Cited by(17)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return