Citation: | AN Shigang, CHEN Dianfu, ZHANG Yongmin, KONG Delei, LI Yang, ZHANG Di, WANG Yang. Application of controllable electric pulse wave permeability-enhancing technology in the low-permeability coal seams[J]. COAL GEOLOGY & EXPLORATION, 2020, 48(4): 138-145. DOI: 10.3969/j.issn.1001-1986.2020.04.020 |
[1] |
张群,葛春贵,李伟,等. 碎软低渗煤层顶板水平井分段压裂煤层气高效抽采模式[J]. 煤炭学报,2018,43(1):150-159.
ZHANG Qun,GE Chungui,LI Wei,et al.A new model and application of coalbed methane high efficiency production from broken soft and low permeable coal seam by roof strata-in horizontal well and staged hydraulic fracture[J]. Journal of China Coal Society,2018,43(1):150-159.
|
[2] |
马会腾,翟成,徐吉钊,等. 基于NMR技术的超声波频率对煤体激励致裂效果的影响[J]. 煤田地质与勘探,2019,47(4):38-44.
MA Huiteng,ZHAI Cheng,XU Jizhao,et al. Effect of NMR technology-based ultrasonic frequency on stimulated cracking of coal[J]. Coal Geology & Exploration,2019,47(4):38-44.
|
[3] |
王建利,陈冬冬,贾秉义. 韩城矿区碎软煤层顶板梳状孔水力压裂瓦斯抽采工程实践[J]. 煤田地质与勘探,2018,46(4):17-21 WANG Jianli,CHEN Dongdong,JIA Bingyi. Practice of gas drainage by hydraulic fracturing of roof pectination boreholes in broken soft coal seam in Hancheng mining area[J]. Coal Geology & Exploration,2018,46(4):17-21.
|
[4] |
闫志铭. 低透煤层井下长钻孔水力压裂增透技术[J]. 煤田地质与勘探,2017,45(3):45-48.
YAN Zhiming. Hydraulic fracturing technology for permeability improvement through underground long borehole along coal seam[J]. Coal Geology & Exploration,2017,45(3):45-48.
|
[5] |
武杰,田永东. 高聚能电脉冲技术在沁水盆地煤层气井的应用[J]. 煤田地质与勘探,2018,46(5):206-211.
WU Jie,TIAN Yongdong. Application of high energy electric pulse technology in coalbed methane wells in Qinshui basin[J]. Coal Geology & Exploration,2018,46(5):206-211.
|
[6] |
汪长栓,姚元文,冯国富,等. 脉冲爆燃压裂技术在煤层气井中的应用[J]. 钻采工艺,2013,36(2):128-130.
WANG Changshuan,YAO Yuanwen,FENG Guofu,et al. Application of pulse deflagration fracturing technology in coalbed methane[J]. Drilling & Production Technology,2013,36(2):128-130.
|
[7] |
牛庆合,曹丽文,周效志. CO2注入对煤储层应力应变与渗透率影响的实验研究[J]. 煤田地质与勘探,2018,46(5):43-48.
NIU Qinghe,CAO Liwen,ZHOU Xiaozhi. Experimental study of the influences of CO2 injection on stress-strain and permeability of coal reservoir[J]. Coal Geology & Exploration,2018,46(5):43-48.
|
[8] |
孙四清,郑凯歌. 井下高压水射流切割煤层增透效果数值模拟[J]. 煤田地质与勘探,2017,45(2):45-49.
SUN Siqing,ZHENG Kaige. Numerical simulation study on permeability enhancement effect of high pressure water cutting coal seam[J]. Coal Geology & Exploration,2017,45(2):45-49.
|
[9] |
徐晓乾,孟应芳,段正鹏,等. 贵州省煤层气(瓦斯)开发适用性技术分析[J]. 煤田地质与勘探,2019,47(6):8-13.
XU Xiaoqian,MENG Yingfang,DUAN Zhengpeng,et al. Analysis of suitable development technology of CBM(gas) in Guizhou[J]. Coal Geology & Exploration,2019,47(6):8-13.
|
[10] |
于文龙. 煤岩渗透率与有效应力耦合关系及控制机理[J]. 煤矿安全,2018,49(8):10-14.
YU Wenlong. Coupling relationship and control mechanism between coal permeability and effective stress[J]. Safety in Coal Mines,2018,49(8):10-14.
|
[11] |
李波,孙东辉,魏建平,等. 孔隙压力梯度对煤的渗透性影响实验[J]. 煤田地质与勘探,2018,46(1):35-40.
LI Bo,SUN Donghui,WEI Jianping,et al. Experimental study on the effect of gas pressure gradient on coal permeability[J]. Coal Geology &Exploration,2018,46(1):35-40.
|
[12] |
石智军,董书宁,杨俊哲,等. 煤矿井下3000 m顺煤层定向钻孔钻进关键技术[J]. 煤田地质与勘探,2019,47(6):1-7.
SHI Zhijun,DONG Shuning,YANG Junzhe,et al. Key technology of drilling in-seam directional borehole of 3000 m in underground coal mine[J]. Coal Geology & Exploration,2019,47(6):1-7.
|
[13] |
袁梅,何明华,王珍,等. 坚固性系数对含瓦斯煤渗透率影响的实验研究[J]. 矿业研究与开发,2012,32(3):39-42.
YUAN Mei,HE Minghua,WANG Zhen,et al. Experimental study of the influence of solidity coefficient on permeability of coal containing gas[J]. Mining Research and Development,2012,32(3):39-42.
|
[14] |
郭平. 滑脱效应和基质变形对低渗透煤体渗流特性影响的试验研究[J]. 煤矿安全,2016,47(7):9-13.
GUO Ping. Experimental study on influence of slippage effect and matrix deformation on gas seepage characteristics of low permeability coal[J]. Safety in Coal Mines,2016,47(7):9-13.
|
[15] |
曹树刚,郭平,李勇,等. 瓦斯压力对原煤渗透特性的影响[J]. 煤炭学报,2010,35(4):595-599.
CAO Shugang,GUO Ping,LI Yong,et al. Effect of gas pressure on gas seepage of outburst coal[J]. Journal of China Coal Society,2010,35(4):595-599.
|
[16] |
张永民,蒙祖智,秦勇,等. 松软煤层可控冲击波增透瓦斯抽采创新实践:以贵州水城矿区中井煤矿为例[J]. 煤炭学报,2019,44(8):2388-2400.
ZHANG Yongmin,MENG Zuzhi,QIN Yong,et al. Innovative engineering practice of soft coal seam permeability enhancement by controllable shock wave for mine gas extraction:A case of Zhongjing mine,Shuicheng,Guizhou Province,China[J]. Journal of China Coal Society,2019,44(8):2388-2400.
|
[17] |
张永民,安世岗,陈殿赋,等. 可控冲击波增透保德煤矿8号煤层的先导性试验[J]. 煤矿安全,2019,50(10):14-17.
ZHANG Yongmin,AN Shigang,CHEN Dianfu,et al. Preliminary tests of coal reservoir permeability enhancement by controllable shock waves in Baode coal mine 8# coal seam[J]. Safety in Coal Mines,2019,50(10):14-17.
|
[18] |
秦勇,邱爱慈,张永民,等. 高聚能重复脉冲强冲击波煤层增渗新技术基础[R]. 徐州:中国矿业大学,2018. QIN Yong,QIU Aici,ZHANG Yongmin,et al. A new technology basis for high-energy and repetitive pulse strong shock wave for coal seam infiltration[R]. Xuzhou:China University of Mining & Technology,2018.
|
[19] |
卢红奇. 高压电脉冲对煤体致裂作用实验研究[D]. 北京:中国矿业大学(北京),2015. LU Hongqi. Experimental research on fracturing coal with high-voltage electrical pulse[D]. Beijing:China University of Mining & Technology(Beijing),2015.
|
[20] |
张永民,邱爱慈,周海滨,等. 面向化石能源开发的电爆炸冲击波技术研究进展[J]. 高压电技术,2016,42(4):1009-1017.
ZHANG Yongmin,QIU Aici,ZHOU Haibin,et al. Research progress in electrical explosion shockwave technology for developing fossil energy[J]. High Voltage Engineering,2016,42(4):1009-1017.
|
1. |
王广君,段雪影,黄鲸珲,胡祥云. 基于蒙特卡洛方法的瞬变电磁接收机过渡过程研究. 工程地球物理学报. 2022(05): 585-594 .
![]() | |
2. |
曾庆宁,罗瀛,刘帅,龙超. 瞬变电磁全期视电阻率的弦截无限逼近算法. 石油地球物理勘探. 2019(06): 1371-1375+1177-1178 .
![]() |