HAO Guoqiang, HU Sherong. Organic nitrogen forms of different rank coals in Handan-Fengfeng mining area, China[J]. COAL GEOLOGY & EXPLORATION, 2020, 48(1): 70-76. DOI: 10.3969/j.issn.1001-1986.2020.01.010
Citation: HAO Guoqiang, HU Sherong. Organic nitrogen forms of different rank coals in Handan-Fengfeng mining area, China[J]. COAL GEOLOGY & EXPLORATION, 2020, 48(1): 70-76. DOI: 10.3969/j.issn.1001-1986.2020.01.010

Organic nitrogen forms of different rank coals in Handan-Fengfeng mining area, China

Funds: 

National Natural Science Foundation of China (41072119)

More Information
  • Received Date: June 27, 2019
  • Revised Date: November 21, 2019
  • Published Date: February 24, 2020
  • Nitrogen is one of the common elements in coal. The occurrence forms of nitrogen in coal are various and vary with coal rank. Based on X-ray photoelectron spectroscopy (XPS), taking Handan-Fengfeng mining area as an example, organic nitrogen forms of different rank coals(Rran=1.08%-3.67%) were studied, and the variation of the relative abundance of each organic nitrogen with rank was further discussed. The results show that four kinds of nitrogen forms are considered for the coals according to binding energies of N 1s XPS sub-peaks, corresponding to N-6, N-5, N-Q and N-X. N-5 is the most abundant organic nitrogen and its relative abundance decreases as coal rank increases, while N-Q shows opposite trend. The variation of the relative abundance of N-6 with rank shows “increasing-decreasing-stable” trend, and N-X accounts for 9.1%-35.1% of the total organic nitrogen, whose changing with coal rank is not obvious. Protonated pyridinic nitrogen, a type of N-Q, which dominates in lignite, almost disappears at a coal rank range from Rran 1.08% to Rran 1.47% due to the loss of oxygen groups and deprotonation, resulting in the absence of N-Q sub-peaks in the XPS spectra.
  • [1]
    刘钦甫,徐占杰,崔晓南,等. 不同煤化程度煤的热解及氮的释放行为[J]. 煤炭学报,2015,40(2):450-455.

    LIU Qinfu,XU Zhanjie,CUI Xiaonan,et al. Release behavior of nitrogen in different rank coals during pyrolysis[J]. Journal of China Coal Society,2015,40(2):450-455.
    [2]
    BURCHILL P,WELCH L S. Variation of nitrogen content and functionality with rank for some UK bituminous coals[J]. Fuel,1989,68(1):100-104.
    [3]
    刘艳华,车得福,李荫堂,等. X射线光电子能谱确定铜川煤及其焦中氮的形态[J].西安交通大学学报,2001,35(7):661-665.

    LIU Yanhua,CHE Defu,LI Yintang,et al. X-Ray photoelectron spectroscopy determination of the forms of nitrogen in Tongchuan coal and its chars[J]. Journal of Xi'an Jiaotong University,2001,35(7):661-665.
    [4]
    PELS J R,KAPTEIJN F,MOULIJN J A,et al. Evolution of nitrogen functionalities in carbonaceous materials during pyrolysis[J]. Carbon N Y,1995,33(11):1641-1653.
    [5]
    KELEMEN S R,GORBATY M L,KWIATEK P J. Quantification of nitrogen forms in Argonne Premium coals[J]. Energy & Fuels,1994,8(4):896-906.
    [6]
    KELEMEN S R,FREUND H,GORBATY M L,et al. Thermal chemistry of nitrogen in kerogen and low-rank coal[J]. Energy & Fuels,1999,13(2):529-538.
    [7]
    KELEMEN S R,AFEWORKI M,GORBATY M L,et al. Thermal transformations of nitrogen and sulfur forms in peat related to coalification[J]. Energy & Fuels,2006,20(2):635-652.
    [8]
    BOUDOU J P,SCHIMMELMANN A,ADER M,et al. Organic nitrogen chemistry during low-grade metamorphism[J]. Geochimica et Cosmochimica Acta,2008,72:1199-1221.
    [9]
    VALENTIM B,GUEDES A,BOAVIDA D. Nitrogeon functionality in "oil window" rank range vitrinite rich coals and chars[J]. Organic Geochemistry,2011,42(5):502-509.
    [10]
    FRIEBEL J,KÖPSEL R F W. The fate of nitrogen during pyrolysis of German low rank coals:A parameter study[J]. Fuel,1999,78(8):923-932.
    [11]
    曹代勇,占文峰,张军,等.邯郸-峰峰矿区新构造特征及其煤炭资源开发意义[J]. 煤炭学报,2007,32(2):141-145.

    CAO Daiyong,ZHAN Wenfeng,ZHANG Jun,et al. Neotectonic character of Handan-Fengfeng mining area and its significance for coal resource exploitation[J]. Journal of China Coal Society,2007,32(2):141-145.
    [12]
    ZHU Q,MONEY S L,RUSSELL A E,et al. Determination of the fate of nitrogen functionality in carbonaceous materials during pyrolysis and combustion using X-ray absorption near edge structure spectroscopy[J]. Langmuir,1997,13(7):2149-2157.
    [13]
    HANSSON K M,ÅMAND L E,HABERMANN A,et al. Pyrolysis of poly-L-leucine under combustion-like conditions[J]. Fuel,2003,82(6):653-660.
    [14]
    BUCKLEY A N,KELLY M D,NELSON P F,et al. Inorganic nitrogen in Australian semi-anthracites:Implications for determining organic nitrogen functionality in bituminous coals by X-ray photoelectron spectroscopy[J]. Fuel Process. Technology,1995,43(1):47-60.
    [15]
    GONG B,PIGRAM P J,LAMB R N. Identification of inorganic nitrogen in an Australian bituminous coal using X-ray photoelectron spectroscopy(XPS) and time-of-flight secondary ion mass spectrometry(TOFSIMS)[J]. International Journal of Coal Geology,1997,34(1):53-68.
    [16]
    刘钦甫,张鹏飞,丁树理,等. 华北石炭二叠纪含煤地层中的铵伊利石[J]. 科学通报,1996,41(8):717-719.

    LIU Qinfu,ZHANG Pengfei,DING Shuli,et al.Ammonium illite in the coal-bearing strata of Carboniferous-Permian in Northern China[J]. Chinese Science Bulletin,1996,41(8):717-719.
    [17]
    梁绍暹,王水利,任大伟,等. 华北石炭二叠纪煤层含铵云母黏土岩夹矸研究[J]. 煤田地质与勘探,1996,24(3):11-18.

    LIANG Shaoxian,WANG Shuili,REN Dawei,et al.Study on tobelite-bearing tonsteins of Carboniferous-Permian coal measures in North China[J]. Coal Geology & Exploration,1996,24(3):11-18.
    [18]
    郑启明,刘钦甫,伍泽广,等. 山西晋城地区含煤地层中的铵伊利石/蒙脱石间层矿物[J]. 煤炭学报,2012,37(2):231-236.

    ZHENG Qiming,LIU Qinfu,WU Zeguang,et al. Ammonium-illite smectite interlayer clay minerals in coal-bearing strata in Jincheng district of Shanxi Province[J]. Journal of China Coal Society,2012,37(2):231-236.
    [19]
    ZHENG Q,LIU Q,SHI S. Mineralogy and geochemistry of ammonian illite in intra-seam partings in Permo-Carboniferous coal of the Qinshui coalfield,North China[J]. International Journal of Coal Geology,2016,153:1-11.
    [20]
    MITRA-KIRTLEY S,MULLINS O C,BRANTHAVER J F,et al. Nitrogen chemistry of kerogens and bitumens from X-ray absorption near-edge structure spectroscopy[J]. Energy and Fuels,1993,7(6):1128-1134.
    [21]
    GENG W,KUMABE Y,NAKAJIMA T,et al. Analysis of hydrothermally treated and weathered coals by X-ray photoelectron spectroscopy(XPS)[J]. Fuel,2009,88:644-649.
  • Cited by

    Periodical cited type(17)

    1. 李昊,李叶繁,魏长婧,王磊杰,康利军,姜川. 基于SBAS-InSAR技术的登封市潜在地质灾害识别研究. 河南科学. 2024(08): 1170-1178 .
    2. 汪晨星,史凌亚,李瑞东. 基于Stacking-InSAR的煤矿沉降监测与综采面参数反演. 陕西煤炭. 2024(10): 14-20 .
    3. 张学辉,崔振东,张中俭,赵磊磊,魏涛,刘东旭,王龙灿. 基于SBAS-InSAR技术的新疆某煤矿长时序地表形变监测与分析. 新疆地质. 2024(03): 459-465 .
    4. 姜川,王磊杰,樊高强,李昊,李叶繁,苑雨,张曦. 基于SBAS-InSAR的郑州煤炭矿区地表沉降监测及演化规律分析. 中国煤炭. 2024(10): 158-165 .
    5. 任瑶瑶,刘国林,牛冲,韩宇,周一鸣. 基于MSBAS InSAR技术的沧州市地表形变监测与分析. 地球物理学进展. 2023(02): 588-599 .
    6. 孙晓云. 基于InSAR和微震技术矿区非法开采事件监测技术探讨和应用. 内蒙古煤炭经济. 2023(03): 113-117 .
    7. 于冰,胡云亮,刘国祥,罗小军,胡金龙. 时序InSAR反演唐山市二维地表形变时间序列. 测绘科学. 2023(06): 82-94+230 .
    8. 孙军,张锦. 基于SBAS-InSAR和偏移追踪技术的露天煤矿地面形变监测. 煤矿安全. 2022(03): 162-169 .
    9. 陈宗玥. 基于图像识别的大型建筑钢结构形变监测研究. 测绘技术装备. 2022(01): 17-21 .
    10. 高宏伟,史先琳,陈晨,尹勇,戴可人. 云南漾濞地震地表二维形变提取. 昆明理工大学学报(自然科学版). 2022(02): 57-64 .
    11. 王凤云,陶秋香,陈洋,韩宇,郭在洁. 基于InSAR的煤矿采空区地表形变监测与预警. 煤矿安全. 2022(06): 195-203 .
    12. 贺黎明,裴攀科,吴立新,张香凝. 基于时序InSAR的矿区滑坡前地表运动特征分析. 东北大学学报(自然科学版). 2022(09): 1314-1321+1368 .
    13. 胡华宗. 基于无人机遥感技术的矿井地面塌陷综合监测. 能源与环保. 2022(09): 85-89 .
    14. 刘健,周皓,张恩正. 基于机器学习的煤矿开采沉陷自动化监测系统. 信息技术. 2022(11): 143-148+154 .
    15. 白洁. 基于机器视觉的测绘工程地面位移形变测量方法. 经纬天地. 2021(02): 93-97 .
    16. 姚鑫,吴付英. 基于GIS技术的矿区开采沉陷形变监测系统设计. 矿产与地质. 2021(03): 549-553+573 .
    17. 高文,王华,侯凌志. 矿山地质灾害监测方法与自动化监测预警系统应用. 西部资源. 2020(06): 66-68 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views (132) PDF downloads (16) Cited by(20)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return