ZHNAG Shuguang, CHANG Jian, WANG Hongwei. Characteristics of heat-adjusting ring and the influence of thermal insulation support structure in high-temperature roadway[J]. COAL GEOLOGY & EXPLORATION, 2019, 47(5): 179-185. DOI: 10.3969/j.issn.1001-1986.2019.05.025
Citation: ZHNAG Shuguang, CHANG Jian, WANG Hongwei. Characteristics of heat-adjusting ring and the influence of thermal insulation support structure in high-temperature roadway[J]. COAL GEOLOGY & EXPLORATION, 2019, 47(5): 179-185. DOI: 10.3969/j.issn.1001-1986.2019.05.025

Characteristics of heat-adjusting ring and the influence of thermal insulation support structure in high-temperature roadway

Funds: 

National Natural Science Foundation of China(51604142,51574141)

More Information
  • Received Date: November 05, 2018
  • Published Date: October 24, 2019
  • To study the distribution of temperature field of surrounding rock-thermal insolating support system under roadway with high temperature, based on the heat dissipation of surrounding rock, the principle of conservation of energy and asynchronous long finite difference method, a one-dimensional unsteady rock-bolting system under finite difference equation was established and computer calculating program was compiled. The law of the influence of ventilation time, surrounding rock, temperature difference, heat insulation layer thickness and temperature conductivity coefficient of thermal conductivity of heat circle on the temperature field of surrounding rock has been found. The results show that the heat dissipation of surrounding rock is delayed and the disturbance of roadway air flow to surrounding rock is reduced, and the roadway cooling is accelerated:As the ventilation time increases, the confining pressure conductivity increases, the thickness of insulation layer decreases, and the thermal conductivity increases, the radius of the heat-adjusting ring increases. The temperature gradient of surrounding rock increases with the increase of ventilation time and the increase of temperature difference between wind and source rock. The cognition of heat-adjusting ring characteristics and heat insulation structure of high-temperature roadway is improved, which is helpful to arrange heat insulation support reasonably.
  • [1]
    何满潮,郭平业. 深部岩体热力学效应及温控对策[J]. 岩石力学与工程学报,2013,32(12):2377-2393.

    HE Manchao,GUO Pingye. Deep rock mass thermodynamic effect and temperature control measures[J]. Chinese Journal of Rock Mechanics and Engineering,2013,32(12):2377-2393.
    [2]
    何满潮. 深部软岩工程的研究进展与挑战[J]. 煤炭学报,2014,39(8):1409-1417.

    HE Manchao. Progress and challenge of soft rock engineering in depth[J]. Journal of China Coal Society,2014,39(8):1409-1417.
    [3]
    褚召祥. 重庆永川煤矿煤岩热物性参数特征[J]. 煤田地质与勘探,2016,44(5):37-41.

    CHU Zhaoxiang. Characteristics of coal and rock thermal properties in Yongchuan mine[J]. Coal Geology & Exploration,2016,44(5):37-41.
    [4]
    亓玉栋,程卫民,于岩斌,等. 我国煤矿高温热害防治技术现状综述与进展[J]. 煤矿安全,2014,45(3):167-170.

    QI Yudong,CHENG Weimin,YU Yanbin,et al. Status summarization and progress of heat hazard control technology in coal mine of China[J]. Safety in Coal Mines,2014,45(3):167-170.
    [5]
    李国富,夏永怀,李珠. 深井巷道隔热降温技术的研究与应用[J]. 金属矿山,2010,39(9):152-154.

    LI Guofu,XIA Yonghuai,LI Zhu. Research and application of insulting and cooling technology in deep roadway[J]. Metal Mine,2010,39(9):152-154.
    [6]
    邹声华,李孔清,张登春,等. 掘进巷道隔热分流排热降温技术的理论与实践研究[J]. 安全与环境学报,2016,16(2):99-102.

    ZOU Shenghua,LI Kongqing,ZHANG Dengchun,et al. Study on theory and practice of heat dissipation,heat dissipation and heat dissipation technology for excavation roadway[J]. Journal of Safety and Environment,2016,16(2):99-102.
    [7]
    张俊儒,欧小强. 适用于高岩温隧道中的高性能隔热轻骨料喷射混凝土[J]. 混凝土,2016(9):140-144.

    ZHANG Junru,OU Xiaoqiang. Research idea for high-per-formance thermal insulation light weight aggregate shotcrete in high geo-temperature tunnel[J]. Concrete,2016(9):140-144.
    [8]
    郭文兵,涂兴子,姚荣,等. 深井煤矿巷道隔热材料研究[J].煤炭科学技术,2003,31(12):23-27.

    GUO Wenbing,TU Xingzi,YAO Rong,et al. Research on isolation material for deep mine roadway[J]. Coal Science and Technology,2003,31(12):23-27.
    [9]
    刘立民,张进鹏. 治理矿井热害的复合隔热材料及其应用[J]. 山东科技大学学报(自然科学版),2017,36(1):46-53.

    LIU Limin,ZHANG Jinpeng. Thermal insulation composite materials for governance of underground thermal hazard and its application[J]. Journal of Shandong University of Science and Technology(Natural Science),2017,36(1):46-53.
    [10]
    张晓雷. 矿井隔热材料的研制及其性能的试验研究[D]. 焦作:河南理工大学,2012.
    [11]
    庞建勇,黄金坤,姚文杰,等. 巷道隔热喷射混凝土强度及导热性能试验研究[J]. 长江科学院院报,2018,35(2):119-124.

    PANG Jianyong,HUANG Jinkun,YAO Wenjie,et al. Experimental study on strength and thermal conductivity of thermal insulation shotcrete in roadway[J]. Journal of Yangtze River Scientific Research Institute,2018,35(2):119-124.
    [12]
    代学灵,李珠,刘元珍,等. 整体式玻化微珠混凝土保温隔热建筑的时程分析[J]. 河南大学学报(自然科学版),2010,40(4):433-435.

    DAI Xueling,LI Zhu,LIU Yuanzhen,et al. Dynamic time-history analysis on integrated thermal insulation buildings made of glazed hollow beads mortar concrete[J]. Journal of Henan University(Natural Science Edition),2010,40(4):433-435.
    [13]
    何发龙,魏亚兴,胡汉华,等. 巷道调热圈半径及其温度场分布的数值模拟研究[J]. 铁道科学与工程学报,2016,13(3):538-543.

    HE Falong,WEI Yaxing,HU Hanhua,et al. Numerical simulation research on radius and temperature field of roadway heat-adjusting layer[J]. Journal of Railway Science and Engineering,2016,13(3):538-543.
    [14]
    高建良,魏平儒. 掘进巷道风流热环境的数值模拟[J]. 煤炭学报,2006,31(2):201-205.

    GAO Jianliang,WEI Pingru. Numerical simulation of the thermal environment at working face of diving airway[J]. Journal of China Coal Society,2006,31(2):201-205.
    [15]
    张树光. 深埋巷道围岩温度场的数值模拟分析[J]. 科学技术与工程,2006,6(14):2194-2196.

    ZHANG Shuguang. Numerical simulation analysis of temperature field in surrounding rock of deeply buried roadway[J]. Science Technology and Engineering,2006,6(14):2194-2196.
    [16]
    MONK P,SULI E. A convergence analysis of Yee's scheme on nonuniform grids[J]. SIAM Journal on Numerical Analysis,1994,31(2):393-412.
    [17]
    岑衍强,侯棋棕. 矿内热环境工程[M]. 武汉:武汉工业大学出版社,1989.
    [18]
    杨天春,朱自强,周勇. Matlab环境下瑞利波有限差分正演与曲线绘制[J]. 煤田地质与勘探,2010,38(1):62-65.

    YANG Tianchun,ZHU Ziqiang,ZHOU Yong. Finite-difference modeling of Rayleigh wave and drawing of seismograms in Matlab environment[J]. Coal Geology & Exploration,2010,38(1):62-65.
    [19]
    樊小利,张学博. 围岩温度场及调热圈半径的半显式差分法解算[J]. 煤炭工程,2011,43(7):82-84.

    FAN Xiaoli,ZHANG Xuebo. Semi explicit difference method for the temperature field of surrounding rock and the radius of t control heat circle[J]. Coal Engineering,2011,43(7):82-84.
  • Related Articles

    [1]HU Zhazha, ZHANG Xun, JIN Yi, GONG Linxian, HUANG Wenhui, REN Jianji, Norbert Klitzsch. A method for intelligent information extraction of coal fractures based on µCT and deep learning[J]. COAL GEOLOGY & EXPLORATION, 2025, 53(2): 55-66. DOI: 10.12363/issn.1001-1986.24.09.0609
    [2]HU Zhazha, ZHANG Xun, JIN Yi, GONG Linxian, HUANG Wenhui, REN Jianji, Norbert Klitzsch. Intelligent coal fracture extraction method using μCT and deep learning[J]. COAL GEOLOGY & EXPLORATION.
    [3]CHEN Dongdong, WANG Jianli, JIA Bingyi, XI Jie. High-efficiency regional gas drainage model after hydraulic fracturing of comb-shaped long boreholes in the roof of broken soft and low permeability coal seam[J]. COAL GEOLOGY & EXPLORATION, 2022, 50(8): 29-36. DOI: 10.12363/issn.1001-1986.22.03.0195
    [4]GUO Chaoqi, ZHAO Jizhan, LI Xiaojian, ZHANG Jingfei, WU Shengli, CHEN Dongdong, HUANG Xingli, LI Baojun. Technology and application of high efficiency gas extraction by directional long borehole hydraulic fracturing in coal seams of medium hardness and low permeability[J]. COAL GEOLOGY & EXPLORATION, 2020, 48(6): 103-108,115. DOI: 10.3969/j.issn.1001-1986.2020.06.014
    [5]ZHAO Rui, FAN Tao, LI Yuteng, WANG Jikuang, MA Yuan, WANG Bingchun, LIU Lei, FANG Zhe. Application of borehole transient electromagnetic detection in the test of hydraulic fracturing effect[J]. COAL GEOLOGY & EXPLORATION, 2020, 48(4): 41-45. DOI: 10.3969/j.issn.1001-1986.2020.04.006
    [6]WANG Zhirong, YANG Jie, CHEN Lingxia, GUO Zhiwei. Productivity prediction of hypotonic CBM test well in Jiaozuo mining area under hydraulic fracturing[J]. COAL GEOLOGY & EXPLORATION, 2019, 47(3): 70-76. DOI: 10.3969/j.issn.1001-1986.2019.03.012
    [7]YAN Zhiming. Hydraulic fracturing technology for permeability improvement through underground long borehole along coal seam[J]. COAL GEOLOGY & EXPLORATION, 2017, 45(3): 45-48. DOI: 10.3969/j.issn.1001-1986.2017.03.008
    [8]LI Xiangchen, CHEN Defei, KANG Yili, MENG Xiangjuan. Characterization of pores and fractures of coal based on CT scan[J]. COAL GEOLOGY & EXPLORATION, 2016, 44(5): 58-62,70. DOI: 10.3969/j.issn.1001-1986.2016.05.011
    [9]ZHANG Shuangbin, SU Xianbo, GUO Hongyu. Experimental optimization of proppant for hydraulic fracturing in coal reservoir[J]. COAL GEOLOGY & EXPLORATION, 2016, 44(1): 51-55. DOI: 10.3969/j.issn.1001-1986.2016.01.010
    [10]ZHANG Hong, XU Ju-zhen, YANG Hong-bin, WANG Rui-xia, HE Zi-jiang. Evaluation and study on coal reservoir fracture system in Heshun area[J]. COAL GEOLOGY & EXPLORATION, 2002, 30(4): 27-29.
  • Cited by

    Periodical cited type(9)

    1. 齐治虎,姬玉平,王迪,徐影,李亚辉,刘文强,刘均荣. 填料水泥导热性能实验及对U型地热井取热影响的数值模拟研究. 能源与环保. 2024(02): 70-76 .
    2. 韩元红,贾国圣,张廷会,张育平,薛宇泽,金立文. 地热浅埋孔回填材料中砂粒结构对导热系数的影响. 科学技术与工程. 2023(15): 6599-6606 .
    3. 张丰琰,李立鑫,代晓光,董子良,韩丽丽,王博. 地热井保温水泥导热系数影响因素研究. 太阳能学报. 2023(09): 493-502 .
    4. 杜渊博,葛勇. 水泥石导热系数的计算模型. 硅酸盐学报. 2022(02): 466-472 .
    5. 杨雨,汪启龙,杨东,瞿勇,张浩,王凯鹏. 导热填料对地热井固井材料性能及结构的影响. 钻采工艺. 2022(01): 59-64 .
    6. 陶宇龙,赵凯. 试论分级固井技术在“取热不取水”地热井施工中的应用. 工程建设与设计. 2022(07): 180-182 .
    7. 雷燕子,杨永健,汪启龙,田烨. 温度对高导热固井材料性能及结构的影响研究. 山西建筑. 2022(16): 100-103 .
    8. 贾海梁,朱子贤,周阳,孙强. 砂-重晶石粉填料导热性能与传热机制研究. 煤田地质与勘探. 2022(11): 162-173 . 本站查看
    9. 张丰琰,李立鑫. 地热井固井水泥石传热性能研究现状及展望. 钻探工程. 2021(12): 54-64 .

    Other cited types(6)

Catalog

    Article Metrics

    Article views (185) PDF downloads (15) Cited by(15)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return