ZHNAG Shuguang, CHANG Jian, WANG Hongwei. Characteristics of heat-adjusting ring and the influence of thermal insulation support structure in high-temperature roadway[J]. COAL GEOLOGY & EXPLORATION, 2019, 47(5): 179-185. DOI: 10.3969/j.issn.1001-1986.2019.05.025
Citation: ZHNAG Shuguang, CHANG Jian, WANG Hongwei. Characteristics of heat-adjusting ring and the influence of thermal insulation support structure in high-temperature roadway[J]. COAL GEOLOGY & EXPLORATION, 2019, 47(5): 179-185. DOI: 10.3969/j.issn.1001-1986.2019.05.025

Characteristics of heat-adjusting ring and the influence of thermal insulation support structure in high-temperature roadway

Funds: 

National Natural Science Foundation of China(51604142,51574141)

More Information
  • Received Date: November 05, 2018
  • Published Date: October 24, 2019
  • To study the distribution of temperature field of surrounding rock-thermal insolating support system under roadway with high temperature, based on the heat dissipation of surrounding rock, the principle of conservation of energy and asynchronous long finite difference method, a one-dimensional unsteady rock-bolting system under finite difference equation was established and computer calculating program was compiled. The law of the influence of ventilation time, surrounding rock, temperature difference, heat insulation layer thickness and temperature conductivity coefficient of thermal conductivity of heat circle on the temperature field of surrounding rock has been found. The results show that the heat dissipation of surrounding rock is delayed and the disturbance of roadway air flow to surrounding rock is reduced, and the roadway cooling is accelerated:As the ventilation time increases, the confining pressure conductivity increases, the thickness of insulation layer decreases, and the thermal conductivity increases, the radius of the heat-adjusting ring increases. The temperature gradient of surrounding rock increases with the increase of ventilation time and the increase of temperature difference between wind and source rock. The cognition of heat-adjusting ring characteristics and heat insulation structure of high-temperature roadway is improved, which is helpful to arrange heat insulation support reasonably.
  • [1]
    何满潮,郭平业. 深部岩体热力学效应及温控对策[J]. 岩石力学与工程学报,2013,32(12):2377-2393.

    HE Manchao,GUO Pingye. Deep rock mass thermodynamic effect and temperature control measures[J]. Chinese Journal of Rock Mechanics and Engineering,2013,32(12):2377-2393.
    [2]
    何满潮. 深部软岩工程的研究进展与挑战[J]. 煤炭学报,2014,39(8):1409-1417.

    HE Manchao. Progress and challenge of soft rock engineering in depth[J]. Journal of China Coal Society,2014,39(8):1409-1417.
    [3]
    褚召祥. 重庆永川煤矿煤岩热物性参数特征[J]. 煤田地质与勘探,2016,44(5):37-41.

    CHU Zhaoxiang. Characteristics of coal and rock thermal properties in Yongchuan mine[J]. Coal Geology & Exploration,2016,44(5):37-41.
    [4]
    亓玉栋,程卫民,于岩斌,等. 我国煤矿高温热害防治技术现状综述与进展[J]. 煤矿安全,2014,45(3):167-170.

    QI Yudong,CHENG Weimin,YU Yanbin,et al. Status summarization and progress of heat hazard control technology in coal mine of China[J]. Safety in Coal Mines,2014,45(3):167-170.
    [5]
    李国富,夏永怀,李珠. 深井巷道隔热降温技术的研究与应用[J]. 金属矿山,2010,39(9):152-154.

    LI Guofu,XIA Yonghuai,LI Zhu. Research and application of insulting and cooling technology in deep roadway[J]. Metal Mine,2010,39(9):152-154.
    [6]
    邹声华,李孔清,张登春,等. 掘进巷道隔热分流排热降温技术的理论与实践研究[J]. 安全与环境学报,2016,16(2):99-102.

    ZOU Shenghua,LI Kongqing,ZHANG Dengchun,et al. Study on theory and practice of heat dissipation,heat dissipation and heat dissipation technology for excavation roadway[J]. Journal of Safety and Environment,2016,16(2):99-102.
    [7]
    张俊儒,欧小强. 适用于高岩温隧道中的高性能隔热轻骨料喷射混凝土[J]. 混凝土,2016(9):140-144.

    ZHANG Junru,OU Xiaoqiang. Research idea for high-per-formance thermal insulation light weight aggregate shotcrete in high geo-temperature tunnel[J]. Concrete,2016(9):140-144.
    [8]
    郭文兵,涂兴子,姚荣,等. 深井煤矿巷道隔热材料研究[J].煤炭科学技术,2003,31(12):23-27.

    GUO Wenbing,TU Xingzi,YAO Rong,et al. Research on isolation material for deep mine roadway[J]. Coal Science and Technology,2003,31(12):23-27.
    [9]
    刘立民,张进鹏. 治理矿井热害的复合隔热材料及其应用[J]. 山东科技大学学报(自然科学版),2017,36(1):46-53.

    LIU Limin,ZHANG Jinpeng. Thermal insulation composite materials for governance of underground thermal hazard and its application[J]. Journal of Shandong University of Science and Technology(Natural Science),2017,36(1):46-53.
    [10]
    张晓雷. 矿井隔热材料的研制及其性能的试验研究[D]. 焦作:河南理工大学,2012.
    [11]
    庞建勇,黄金坤,姚文杰,等. 巷道隔热喷射混凝土强度及导热性能试验研究[J]. 长江科学院院报,2018,35(2):119-124.

    PANG Jianyong,HUANG Jinkun,YAO Wenjie,et al. Experimental study on strength and thermal conductivity of thermal insulation shotcrete in roadway[J]. Journal of Yangtze River Scientific Research Institute,2018,35(2):119-124.
    [12]
    代学灵,李珠,刘元珍,等. 整体式玻化微珠混凝土保温隔热建筑的时程分析[J]. 河南大学学报(自然科学版),2010,40(4):433-435.

    DAI Xueling,LI Zhu,LIU Yuanzhen,et al. Dynamic time-history analysis on integrated thermal insulation buildings made of glazed hollow beads mortar concrete[J]. Journal of Henan University(Natural Science Edition),2010,40(4):433-435.
    [13]
    何发龙,魏亚兴,胡汉华,等. 巷道调热圈半径及其温度场分布的数值模拟研究[J]. 铁道科学与工程学报,2016,13(3):538-543.

    HE Falong,WEI Yaxing,HU Hanhua,et al. Numerical simulation research on radius and temperature field of roadway heat-adjusting layer[J]. Journal of Railway Science and Engineering,2016,13(3):538-543.
    [14]
    高建良,魏平儒. 掘进巷道风流热环境的数值模拟[J]. 煤炭学报,2006,31(2):201-205.

    GAO Jianliang,WEI Pingru. Numerical simulation of the thermal environment at working face of diving airway[J]. Journal of China Coal Society,2006,31(2):201-205.
    [15]
    张树光. 深埋巷道围岩温度场的数值模拟分析[J]. 科学技术与工程,2006,6(14):2194-2196.

    ZHANG Shuguang. Numerical simulation analysis of temperature field in surrounding rock of deeply buried roadway[J]. Science Technology and Engineering,2006,6(14):2194-2196.
    [16]
    MONK P,SULI E. A convergence analysis of Yee's scheme on nonuniform grids[J]. SIAM Journal on Numerical Analysis,1994,31(2):393-412.
    [17]
    岑衍强,侯棋棕. 矿内热环境工程[M]. 武汉:武汉工业大学出版社,1989.
    [18]
    杨天春,朱自强,周勇. Matlab环境下瑞利波有限差分正演与曲线绘制[J]. 煤田地质与勘探,2010,38(1):62-65.

    YANG Tianchun,ZHU Ziqiang,ZHOU Yong. Finite-difference modeling of Rayleigh wave and drawing of seismograms in Matlab environment[J]. Coal Geology & Exploration,2010,38(1):62-65.
    [19]
    樊小利,张学博. 围岩温度场及调热圈半径的半显式差分法解算[J]. 煤炭工程,2011,43(7):82-84.

    FAN Xiaoli,ZHANG Xuebo. Semi explicit difference method for the temperature field of surrounding rock and the radius of t control heat circle[J]. Coal Engineering,2011,43(7):82-84.
  • Related Articles

    [1]LI Zhiqiang, ZHANG Ningchao, CHEN Jinsheng, CHEN Liwei, FENG Wenxiang, LIU Longwei, WANG Yungang. Dynamic evolution law of high temperature steam seepage and thermal strain of coal during heat injection process[J]. COAL GEOLOGY & EXPLORATION.
    [2]LI Huaixin, LIN Bin, WANG Peng. Influence factors and formation properties of temperature field in the frozen wall of double ring pipes[J]. COAL GEOLOGY & EXPLORATION, 2020, 48(3): 169-175. DOI: 10.3969/j.issn.1001-1986.2020.03.024
    [3]LI Bo, SUN Donghui, WEI Jianping, ZHANG Lulu. Experimental study on the effect of gas pressure gradient on coal permeability[J]. COAL GEOLOGY & EXPLORATION, 2018, 46(1): 35-40. DOI: 10.3969/j.issn.1001-1986.2018.01.006
    [4]YE Wanjun, LIU Zhongxiang, YANG Gengshe, ZHAO Zhipeng. Test of water migration of remolded loess under temperature variation[J]. COAL GEOLOGY & EXPLORATION, 2017, 45(4): 126-130. DOI: 10.3969/j.issn.1001-1986.2017.04.022
    [5]LIN Peng, PENG Suping, LU Yongxu, WANG Taotao. Full waveform inversion based on the conjugate gradient method[J]. COAL GEOLOGY & EXPLORATION, 2017, 45(1): 131-136,142. DOI: 10.3969/j.issn.1001-1986.2017.01.026
    [6]WANG Haijun. Approximate steady state correction of simple well temperature curve: with LYL mine field as an example[J]. COAL GEOLOGY & EXPLORATION, 2016, 44(1): 90-93. DOI: 10.3969/j.issn.1001-1986.2016.01.017
    [7]LIN Yabing, MA Dongmin, LIU Yuhui, MA Wei, JIA Xuemei. Experiment of the influence of temperature on coalbed methane adsorption[J]. COAL GEOLOGY & EXPLORATION, 2012, 40(6): 24-28. DOI: 10.3969/j.issn.1001-1986.2012.06.006
    [8]MA Dongmin, ZHANG Suian, WANG Penggang, LIN Yabing, WANG Chen. Mechanism of coalbed methane desorption at different temperatures[J]. COAL GEOLOGY & EXPLORATION, 2011, 39(1): 20-23. DOI: 10.3969/j.issn.1001-1986.2011.01.005
    [9]XU Kai-jun, LI Tong-lin, ZHANG Hui, LI Jian-ping. 3D resistivity inversion of vertical finite line source using conjugate gradients[J]. COAL GEOLOGY & EXPLORATION, 2006, 34(3): 68-71.
    [10]Li Xuejun. STUDY AND EXPERIMENT ON HEADING DETECTING BY FIXEDELECTRIC SOURCE GRADIENT METHOD IN UNDERGROUND[J]. COAL GEOLOGY & EXPLORATION, 1992, 20(4): 59-63.
  • Cited by

    Periodical cited type(7)

    1. 牛成虎,曹煜,昌李宁,刘惠洲,谢国鑫,董亚,郭小同. 基于移动采煤机震源的煤层工作面异常构造反射数据提取与成像方法研究. 煤炭技术. 2025(03): 107-110 .
    2. 谷保泽,刘硕,刘海东. 随掘地震在乌海矿区断层超前预测中的应用研究. 煤炭技术. 2024(01): 90-95 .
    3. 赵会波,覃思,陈超,关奇,赵星伟,车建航. 随掘地震地质构造精细监测在山西王坡煤矿的应用. 煤田地质与勘探. 2024(06): 137-144 . 本站查看
    4. 王云宏,王保利,程建远,崔伟雄,金丹. 孔–巷联合随采地震相关时差层析成像. 煤田地质与勘探. 2021(03): 199-204 . 本站查看
    5. 王季,覃思,吴海,张庆庆,余俊辉,苏晓云. 随掘地震实时超前探测系统的试验研究. 煤田地质与勘探. 2021(04): 1-7 . 本站查看
    6. 王保利 ,程建远 ,崔伟雄 ,王云宏 ,金丹 ,张唤兰 . 采煤工作面随采地震探测技术研究进展——以贵州岩脚矿12701工作面为例. 煤炭学报. 2021(S1): 406-413 .
    7. 张唤兰,王保利. 基于分段波形互相关的井下随采地震数据成像. 煤田地质与勘探. 2020(04): 29-33+40 . 本站查看

    Other cited types(1)

Catalog

    Article Metrics

    Article views (185) PDF downloads (15) Cited by(8)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return