HU Weiyue, ZHAO Chunhu. Trilinear chart classification method of mine water hazard type based on factors of water recharge[J]. COAL GEOLOGY & EXPLORATION, 2019, 47(5): 1-8. DOI: 10.3969/j.issn.1001-1986.2019.05.001
Citation: HU Weiyue, ZHAO Chunhu. Trilinear chart classification method of mine water hazard type based on factors of water recharge[J]. COAL GEOLOGY & EXPLORATION, 2019, 47(5): 1-8. DOI: 10.3969/j.issn.1001-1986.2019.05.001

Trilinear chart classification method of mine water hazard type based on factors of water recharge

Funds: 

National Key R&D Program of China(2017YFC0804103)

More Information
  • Received Date: July 09, 2019
  • Published Date: October 24, 2019
  • The results of the classification of hydrogeological types in coal mines are relatively inadequate to reflect the characteristics of water hazards such as water sources and water inrush channels. It is not very instructive to carry out water control work in coal mines starting from the basic elements of mine water hazard formation, this paper analyses the characteristics and harm degree of mine water hazard under different types of mine water sources, water inrush channels and their combination conditions, the water inrush source can be divided into 4 types according to its water-rich degree and supply capacity:weak supply of slow seepage, fast supply of gushing, strong supply of sudden outflow and non-blocking full supply. The channel of water inrush can be divided into 4 types according to its unblocked degree:low seepage flow, high seepage flow, small sectional free flow pipeline and large sectional free flow channel. Moreover, according to the combination relationship between different water source and water inrush channel, the mine water threat degree is divided into 4 grades:slight, medium, serious and extremely serious. Based on Piper's trilinear chart and Kurlov's principle of groundwater chemical analysis, this paper puts forward the method of water hazard type classification, disaster degree evaluation and the naming according to the "4-4-4" trilinear chart which is more instructive to mine water hazard prevention and control.
  • [1]
    董书宁,虎维岳. 中国煤矿水害基本特征及其主要影响因素[J]. 煤田地质与勘探,2007,35(5):34-38.

    DONG Shuning,HU Weiyue. Basic characteristics and main controlling factors of coal mine water hazard in China[J]. Coal Geology & Exploration,2007,35(5):34-38.
    [2]
    武强,崔芳鹏,赵苏启,等. 矿井水害类型划分及主要特征分析[J].煤炭学报,2013,38(4):561-565.

    WU Qiang,CUI Fangpen,ZHAO Suqi,et al. Type classification and main characteristics of mine water disasters[J]. Journal of China Coal Society,2013,38(4):561-565.
    [3]
    国家煤矿安全监察局. 煤矿防治水细则[M]. 北京:煤炭工业出版社,2018.
    [4]
    闫朝波. 张家峁煤矿煤层顶板涌(突)水危险性分区预测研究[D]. 西安:西安科技大学,2013.
    [5]
    刘英锋,王新. 黄陇侏罗纪煤田顶板水害防治问题及对策探讨[J]. 西安科技大学学报,2013,33(4):431-435.

    LIU Yingfeng,WANG Xin. Water hazard prevention and control in Huanglong Jurassic coalfield[J]. Journal of Xi'an University of Science & Technology,2013,33(4):431-435.
    [6]
    虎维岳. 华北东部深部岩溶及煤矿岩溶水害特征[J]. 煤田地质与勘探,2010,38(2):23-27.

    HU Weiyue. The characteristics of karst and deep coal mine karst water hazards in eastern North China[J]. Coal Geology & Exploration,2010,38(2):23-27.
    [7]
    赵本肖, 常明华. 邯峰矿区岩溶含水层特征及富水性分区[J]. 中国煤田地质,2007,19(5):41-43.

    ZHAO Benxiao,CHANG Minghua. Handan-Fengfeng mining area karstic aquifer characteristics and water yield property division[J]. Coal Geology of China,2007,19(5):41-43.
    [8]
    靳德武,刘英锋,刘再斌,等. 煤矿重大突水灾害防治技术研究新进展[J]. 煤炭科学技术,2013,41(1):25-29.

    JIN Dewu,LIU Yingfeng,LIU Zaibin,et al. New progress of study on major water inrush disaster prevention and control technology in coal mine[J]. Coal Science & Technology,2013,41(1):25-29.
    [9]
    刘晓玲,魏奥林,王毅,等. 浅析陕北煤矿矿区地质灾害发育特征及其成灾过程[J]. 中国地质灾害与防治学报,2016, 27(4):70-73.

    LIU Xiaolin,WEI Aolin,WANG Yi,et al. Analyses of development characteristics and formation of geological disasters in coal mine area of northern Shaanxi[J]. The Chinese Journal of Geological Hazard and Control,2016,27(4):70-73.
    [10]
    黄震,姜振泉,孙强,等. 深部巷道底板岩体渗透性高压压水试验研究[J]. 岩土工程学报,2014,36(8):1535-1543.

    HUANG Zhen,JIANG Zhengquan,SUN Qiang,et al. High-pressure water injection tests on permeability of deep rock mass under tunnels[J]. Chinese Journal of Geotechnical Engineering, 2014,36(8):1535-1543.
    [11]
    肖洪天,张文泉,温兴林,等. 分层开采底板岩体渗透性变化的试验研究[J]. 煤炭学报,2000,25(2):132-136.

    XIAO Hongtian,ZHANG Wenquan,WEN Xingling,et al. Experimental investigation of floor rock permeability through injecting water in the slicing process[J]. Journal of China Coal Society,2000,25(2):132-136.
    [12]
    李涛,王苏健,韩磊,等. 生态脆弱矿区松散含水层下采煤保护土层合理厚度[J]. 煤炭学报,2017,42(1):98-105.

    LI Tao,WANG Sujian,HAN Lei,et al. Reasonable thickness of protected loess under loose aquifer in ecologically fragile mining area[J]. Journal of China Coal Society,2017,42(1):98-105.
    [13]
    MUKAI A,FUJIMORI K. Secular change of permeability in the fracture zone near the Nojima fault estimated using strain changes due to water injection experiments[J]. Tectonophysics,2007,443(3/4):193-199.
    [14]
    李兴高,高延法. 开采对底板岩体渗透性的影响[J]. 岩石力学与工程学报,2003,22(7):1078-1082.

    LI Xinggao,GAO Yanfa. Influence of mining on permeability of floor rock mass[J]. Journal of Rock Mechanics and Engineering, 2003,22(7):1078-1082.
    [15]
    王皓, 乔伟, 柴蕊. 采动影响下煤层覆岩渗透性变化规律及垂向分带特征[J]. 煤田地质与勘探,2015,43(3):51-55.

    WANG Hao,QIAO Wei,CHAI Rui. Overburden rock permeability variation and vertical zoning characteristics under the influence of coal mining[J]. Coal Geology & Exploration,2015,43(3):51-55.
    [16]
    WANG W X,SUI W H,FAYBISHENKO B,et al. Permeability variations within mining-induced fractured rock mass and its influence on groundwater inrush[J]. Environmental Earth Sciences,2016,75(4):326.
    [17]
    刘德民,连会青,李飞. 封闭不良钻孔侧壁突水机理研究[J]. 中国安全生产科学技术, 2014,10(5):74-77.

    LIU Demin,Lian Huiqing,LI Fei. Research on mechanism of water-inrush at side face of poor sealing borehole[J]. Journal of Safety Science & Technology,2014,10(5):74-77.
    [18]
    颜世杰,李永春,薛梅,等. 封闭不良钻孔突水机理及防治对策[C]//安全高效煤矿地质保障技术及应用-中国地质学会、中国煤炭学会煤田地质专业委员会、中国煤炭工业劳动保护科学技术学会水害防治专业委员会学术年会文集,2007.08,北京:煤炭工业出版社,2007:273-276.
    [19]
    MA Dan,BAI Haibo,MIAO Xiexing,et al. Compaction and seepage properties of crushed limestone particle mixture:An experimental investigation for Ordovician karst collapse pillar groundwater inrush[J]. Environmental Earth Sciences,2016,75(1):1-14.
    [20]
    杨天鸿,师文豪,刘洪磊,等. 基于流态转捩的非线性渗流模型及在陷落柱突水机理分析中的应用[J]. 煤炭学报,2017,42(2):315-321.

    YANG Tianhong,SHI Wenhao,LIU Honglei,et al. A nonlinear flow model based on flow translation and its application in the mechanism analysis of water inrush through collapse pillar[J]. Journal of China Coal Society,2017,42(2):315-321.
    [21]
    李振华,徐高明,李见波. 我国陷落柱突水问题的研究现状与展望[J]. 中国矿业,2009,18(4):107-109.

    LI Zhenhua,XU Gaoming,LI Jianbo. Research status and outlook of water-inrush from collapse column in China[J]. China Mining Magazine,2009,18(4):107-109.
  • Related Articles

    [1]JIN Dewu, LI Chaofeng, LIU Yingfeng, CAO Haitao, REN Dengjun, WANG Hongliang, ZHANG Jinkui, HUANG Yang, YANG Guodong, GUO Kang, FAN Min, LIU Chenkai. Characteristics of roof water hazard of coal seam in Huanglong Coalfield and key technologies for prevention and control[J]. COAL GEOLOGY & EXPLORATION, 2023, 51(1): 205-213. DOI: 10.12363/issn.1001-1986.22.10.0754
    [2]LI Zhi, ZHENG Shitian, SHI Zhiyuan, WANG Yuhang. Prevention and control technology of goaf water hazard in unauthorized mining areas of extremely soft and medium-thick coal seams[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(6): 167-174. DOI: 10.3969/j.issn.1001-1986.2021.06.020
    [3]WANG Hao, DONG Shuning, QIAO Wei, JI Yadong, ZHU Kaipeng, ZHOU Zhenfang, NING Dianyan, SHANG Hongbo. Construction and application of remote service cloud platform for mine water hazard prevention and control[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(1): 208-216. DOI: 10.3969/j.issn.1001-1986.2021.01.022
    [4]REN Dengjun, SUN Yayue, LI Jianyang. Hydrochemical characteristics and control of water hazard from coal seam roof in Gaojiabao coal mine[J]. COAL GEOLOGY & EXPLORATION, 2019, 47(S1): 26-31. DOI: 10.3969/j.issn.1001-1986.2019.S1.005
    [5]WANG Hao. Formation mechanism of coal seam aquifer and water hazard control technology[J]. COAL GEOLOGY & EXPLORATION, 2019, 47(3): 117-123. DOI: 10.3969/j.issn.1001-1986.2019.03.019
    [6]LI Wei, WU Jiwen, ZHAI Xiaorong. Evaluation of goaf water hazard and its prevention and control technology of abandoned coal mines in Zhahe mining area of Huaibei[J]. COAL GEOLOGY & EXPLORATION, 2018, 46(S1): 16-22. DOI: 10.3969/j.issn.1001-1986.2018.S1.004
    [7]MA Lei, QIAN Jiazhong, ZHAO Weidong, ZHOU Xiaoping. GIS-based decision-making support system for prevention and control of water hazards in coal mines[J]. COAL GEOLOGY & EXPLORATION, 2014, 42(5): 44-49. DOI: 10.3969/j.issn.1001-1986.2014.05.009
    [8]HU Weiyue. The characteristics of karst and deep coal mine karst water hazards in eastern North China[J]. COAL GEOLOGY & EXPLORATION, 2010, 38(2): 23-27. DOI: 10.3969/j.issn.1001-1986.2010.02.006
    [9]DONG Shu-ning, HU Wei-yue. Basic characteristics and main controlling factors of coal mine water hazard in China[J]. COAL GEOLOGY & EXPLORATION, 2007, 35(5): 34-38.
    [10]ZHANG Jin-tao. The relationship of Tertiary groundwater and mining No.4 coal seam in Huafeng Coal Mine[J]. COAL GEOLOGY & EXPLORATION, 2002, 30(5): 35-38.
  • Cited by

    Periodical cited type(16)

    1. 刘国超. 奥灰岩渗透特性与断层注浆扩散规律实验研究. 煤矿现代化. 2025(02): 97-101 .
    2. 夏玉成,孙学阳,苗霖田,郭晨,杜荣军. 智能时代的矿井地质工作展望——矿井开采智能地质保障技术体系架构. 煤田地质与勘探. 2025(01): 64-76 . 本站查看
    3. 靳德武,李超峰,刘英锋,曹海涛,任邓君,王红亮,张金魁,黄阳,杨国栋,郭康,樊敏,刘宸铠. 黄陇煤田煤层顶板水害特征及其防控技术. 煤田地质与勘探. 2023(01): 205-213 . 本站查看
    4. 贾建称,贾茜,桑向阳,吴艳. 我国煤矿地质保障系统建设30年:回顾与展望. 煤田地质与勘探. 2023(01): 86-106 . 本站查看
    5. 范立民,马万超,常波峰,孙魁,苗彦平,路波,田水豹,杨磊. 榆神府矿区地下水水化学特征及形成机理. 煤炭科学技术. 2023(01): 383-394 .
    6. 李舒,杨泽元,马雄德,刘胜祖,方楚婧,张奥奇. 神府南区延安组含水层富水性对矿井涌水量的影响研究. 煤田地质与勘探. 2023(06): 92-102 . 本站查看
    7. 何金 ,丁华 ,白向飞 ,袁东营 ,张昀朋 ,杨承伟 . 准东煤田大井矿区B_1煤中水溶态离子分布及赋存特征. 煤炭转化. 2023(05): 1-11 .
    8. 王程,李博凡,吴璋,鲁晶津. 孔间电阻率监测在注浆效果检测的应用研究. 工矿自动化. 2023(10): 127-132+159 .
    9. 孙文斌,薛延东,杨辉,张晓波,孔令君. 工作面回采对断层裂隙带应力扰动规律及注浆加固机制研究. 岩石力学与工程学报. 2023(11): 2668-2681 .
    10. 苗彦平,蔚波,姬中奎,陈小绳,路波,薛小渊. 侏罗纪浅埋煤层开采典型水害模式及分区. 煤矿安全. 2021(08): 75-82 .
    11. 赵钟南,许洋铖,吴燕清,谭青青,康跃明,王耀. 井下瞬变电磁仪硬件对致灾水体分辨能力的评估. 煤田地质与勘探. 2021(04): 40-48 . 本站查看
    12. 史新国,翟勃,王卫龙. 基于大数据智能的煤矿水害预测数据建模研究. 自动化与仪器仪表. 2021(10): 37-40 .
    13. 周志清,李萍. 象山矿井涌水量相关因素分析. 陕西煤炭. 2020(03): 73-76+145 .
    14. 靳德武,李鹏,赵春虎,王玺瑞. 采场三维充水结构地质建模及动态可视化实现. 煤炭科学技术. 2020(07): 143-149 .
    15. 段建华. 煤层底板突水综合监测技术及其应用. 煤田地质与勘探. 2020(04): 19-28 . 本站查看
    16. 李超峰. 煤层顶板含水层涌水危险性评价方法. 煤炭学报. 2020(S1): 384-392 .

    Other cited types(9)

Catalog

    Article Metrics

    Article views (165) PDF downloads (26) Cited by(25)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return