ZHAO Yunpei, WANG Wei, HOU Xianhua. Channel wave advanced detection method based on Kirchhoff migration and its application[J]. COAL GEOLOGY & EXPLORATION, 2019, 47(4): 186-192. DOI: 10.3969/j.issn.1001-1986.2019.04.028
Citation: ZHAO Yunpei, WANG Wei, HOU Xianhua. Channel wave advanced detection method based on Kirchhoff migration and its application[J]. COAL GEOLOGY & EXPLORATION, 2019, 47(4): 186-192. DOI: 10.3969/j.issn.1001-1986.2019.04.028

Channel wave advanced detection method based on Kirchhoff migration and its application

Funds: 

National Key R&D Program of China(2017YFC0602802)

More Information
  • Received Date: January 11, 2019
  • Published Date: August 24, 2019
  • In order to detect the geological structures in the front of the working face 1199 in Gequan mine of Xingtai mining area, underground channel wave seismic exploration was used to conduct advanced detection, linear Radon transform was used to extract the reflection wave from the front of the roadway, parameter information of the surrounding rocks were obtained through velocity analysis in time domain, The abnormal geological bodies in the front of the roadway were imaged through Kirchhoff migration. The results indicated that there existed anomalies at 205 m and 237 m away from the geophone point G12 in the front of the excavating roadway, corresponding to the mined-out roadway and the fault SF4 respectively; The velocity parameters were extracted through velocity analysis, it was judged preliminarily that SF4 was water-bearing. The drilling verification results showed that Kirchhoff migration method can image the faults in front of the roadway.
  • [1]
    刘天放,潘东明,李德春,等. 槽波地震勘探[M]. 徐州:中国矿业大学出版社,1994.
    [2]
    EVISON F F. A coal seam as a guide for seismic energy[J]. Nature,1955,176(4495):1224-1225.
    [3]
    AKI K,RICHARDS P G. Quantitative seismology:Theory and methods[M]. San Francisco:W H Freeman and Com-pany,1980.
    [4]
    BUCHANAN D J. The propagation of attenuated SH channel waves[J]. Geophysical Prospecting,1978,26(1):16-28.
    [5]
    BUCHANAN D J,JACKSON P J,DAVIS R. Attenuation and anisotropy of channel waves in coal seams[J]. Geophysics,1983,48(2):133-147.
    [6]
    DRESEN L,FREYSTATTER S. Model seismic investiga-tions on the use of Rayleigh channel waves for the in-mine seismic detection of discontinuities[C]//Proceedings of Coal Seam Discontinuities Symposium. Pittsburgh,Pennsylvania,USA:1976.
    [7]
    DRESEN L,FREYSATTER S. Rayleigh channel waves for the in-seam seismic detection of discontinuities[J]. Journal of Geophysics,1976,42:111-129.
    [8]
    DRESEN L,FREYSTATTER S. The influence of oblique-dipping discontinuities on the use of Rayleigh channel waves for the in-seam seismic reflection method[J]. Geophysical Prospecting,1978,26:1-15.
    [9]
    DRESSEN L,KERNER C,KUHBACH B. The influence of an asymmetry in the sequence of rock/coal/rock on the propagation of Rayleigh seam waves[J]. Geophysical Prospecting,1985,33:519-539.
    [10]
    EWING W M,JARDETZKYW S. Elastic waves in layered media[M]. New York:McGraw-Hill,1957.
    [11]
    FRANSSENS G R,LAGASSES P E,MASON I M. Study of the leaking channel modes of in-seam exploration seismology by means of synthetic seismograms[J]. Geophysics,1985,50(3):414-424.
    [12]
    杨思通,程久龙. 煤巷小构造Rayleigh型槽波超前探测数值模拟[J]. 地球物理学报,2012,55(2):655-662.

    YANG Sitong,CHENG Jiulong. The method of small structure prediction ahead with Rayleigh channel wave in coal roadway and seismic wave field numerical simulation[J]. Journal of Geophysics,2012,55(2):655-662.
    [13]
    程久龙,李飞,彭苏萍,等. 矿井巷道地球物理方法超前探测研究进展与展望[J]. 煤炭学报,2014,39(8):1742-1750.

    CHENG Jiulong,LI Fei,PENG Suping,et al. Research progress and development direction on advanced detection in mine roadway working face using geophysical methods[J]. Journal of China Coal Society,2014,39(8):1742-1750.
    [14]
    程建远,江浩,姬广忠,等. 基于节点式地震仪的煤矿井下槽波地震勘探技术[J]. 煤炭科学技术,2015,43(2):25-28.

    CHENG Jianyuan,JIANG Hao,JI Guangzhong,et al. Channel wave seismic exploration technology based on node digital seismograph in underground mine[J]. Coal Science and Technology,2015,43(2):25-28.
    [15]
    殷瑞华,徐义贤. TSP-203在鹰嘴岩隧道超前地质预报中的应用[J]. 工程地球物理学报,2009,6(3):112-116.

    YIN Ruihua,XU Yixian. The application of TSP-203 to the advanced geological prediction of the Yingzuiyan tunnel[J]. Chinese Journal of Engineering Geophysics,2009,6(3):112-116.
    [16]
    张夏阳. 煤矿巷道前方中小型断层地震波特征及应用研究[D]. 北京:中国矿业大学(北京),2016.
    [17]
    曾昭磺. 隧道地震反射法超前预报[J]. 地球物理学报,1994,37(2):268-271.

    ZENG Shaohuang. Prediction ahead of the tunnel face by the seismic reflection methods[J]. Acta Geophysica Sinica,1994,37(2):268-271.
    [18]
    DU L Z,ZHANG X P,NIU J J,et al. The seismic CT method in measuring rock bodies[J]. Applied Geophysics,2006,3(3):192-195.
    [19]
    查欣洁,王伟,高星. 拟VSP与克希霍夫偏移法在隧道超前预报中的应用[J]. 物探与化探,2016,40(1):214-219.

    ZHA Xinjie,WANG Wei,GAO Xing. The application of pseudo VSP method and Kirchhoff migration to the tunnel advanced geological prediction[J]. Geophysical and Geochemical Exploration,2016,40(1):214-219.
    [20]
    梁庆华,宋劲. 矿井多波多分量地震勘探超前探测原理与实验研究[J]. 中南大学学报(自然科学版),2009,40(5):1392-1398.

    LIANG Qinghua,SONG Jin. Advanced detection theory and experimental research of multi-wave and multi-component seismic exploration in mine[J]. Journal of Central South University (Science and Technology),2009,40(5):1392-1398.
    [21]
    WANG E L,HAN L G,WANG D L. Multi-azimuth three-component surface seismic modeling for viscoelastic cracked monoclinic media[J]. Applied Geophysics,2007,4(1):16-24.
    [22]
    ZHAO Y,LI P F,TIAN S. Prevention and treatment technologies of railway tunnel water inrush and mud gushing in China[J]. Journal of Rock Mechanics and Geotechnical Engineering,2013,5(6):468-477.
    [23]
    姬广忠. 反射槽波绕射偏移成像及应用[J]. 煤田地质与勘探,2017,45(1):121-124.

    JI Guangzhong. Diffraction migration imaging of reflected in-seam waves and its application[J]. Coal Geology & Exploration,2017,45(1):121-124.
    [24]
    乐勇,王伟,申青春,等. 槽波地震勘探技术在工作面小构造探测中的应用[J]. 煤田地质与勘探,2013,41(4):74-77.

    LE Yong,WANG Wei,SHEN Qingchun,et al. Application of ISS in detection of small structures in working face[J]. Coal Geology & Exploration,2013,41(4):74-77.
    [25]
    ZHAO Y B,CHEN S G,TAN X R,et al. New technologies for high-risk tunnel construction in Guiyang Guangzhou high-speed railway[J]. Journal of Modern Transportation,2013,21(4):258-265.
    [26]
    叶英. 隧道地质预报手册[M]. 北京:人民交通出版社股份有限公司,2016.
  • Related Articles

    [1]SUN Fuxun, WEI Jiuchuan, WAN Yunpeng, LIU Chuane. Recognition method of mine water source based on Fisher's discriminant analysis and centroid distance evaluation[J]. COAL GEOLOGY & EXPLORATION, 2017, 45(1): 80-84. DOI: 10.3969/j.issn.1001-1986.2017.01.016
    [2]MA Lei, QIAN Jiazhong, ZHAO Weidong, ZHOU Xiaoping. GIS-based decision-making support system for prevention and control of water hazards in coal mines[J]. COAL GEOLOGY & EXPLORATION, 2014, 42(5): 44-49. DOI: 10.3969/j.issn.1001-1986.2014.05.009
    [3]SUN Ming, ZHENG Wenxiang, ZHANG Wenquan, MA Kai. Discrimination system of combined grey matter-element for water-bursting in seam floor of deep mine[J]. COAL GEOLOGY & EXPLORATION, 2011, 39(6): 36-40. DOI: 10.3969/j.issn.1001-1986.2011.06.009
    [4]ZHANG Chunlei, QIAN Jiazhong, ZHAO Weidong, MA Lei. The application of bayesian approach to discrimination of mine water-inrush source[J]. COAL GEOLOGY & EXPLORATION, 2010, 38(4): 34-37. DOI: 10.3969/j.issn.1001-1986.2010.04.008
    [5]SUN Ya-jun, YANG Guo-yong, ZHENG Lin. Distinguishing system study on resource of mine water inrush based on GIS[J]. COAL GEOLOGY & EXPLORATION, 2007, 35(2): 34-37.
    [6]YIN Xiao-xi, XU Guang-quan, GUI He-rong, CHEN Lu-wang. Analyzing for sources of inrush-water in Wanbei Mining Area by systemic clustering and stepwise distinguishing[J]. COAL GEOLOGY & EXPLORATION, 2006, 34(2): 58-61.
    [7]ZHANG Yong-tai, JIANG Zai-bing. The distinguishing model for the resource of water inrush from coal mine and the software system[J]. COAL GEOLOGY & EXPLORATION, 2003, 31(3): 35-37.
    [8]PENG Su-ping, DUAN Yan-e, MENG Zhao-ping, GE Lian-zhu. Application on Bayes stepwise discnminant analysis method in partition of mine district[J]. COAL GEOLOGY & EXPLORATION, 2003, 31(2): 10-12.
    [9]Li Caihui, Niu Xiangfeng, Ren Suzhen, Kong Fanping. A SYSTEM FOR FAST WATER QUALITY ANALYSIS AND FAST WATER SOURCE DISCRIMINATION[J]. COAL GEOLOGY & EXPLORATION, 1998, 26(3): 43-46.
    [10]Chen Chaoyang, Wang Jingming, Dong Shuning, Jiang Feng, Wang Qinglong, Gao Jianzhong. A MODEL OF DISCRIMINATION OF THE WATER SOURCES OF OUTBURST IN JIAOZUO COAL MINE AREA[J]. COAL GEOLOGY & EXPLORATION, 1996, 24(4): 38-40.
  • Cited by

    Periodical cited type(25)

    1. 郑剑,陈陆望,张杰,张苗,郑忻,胡永胜. 贝叶斯突水水源判别与反向水文地球化学模拟的含水层水力分析. 合肥工业大学学报(自然科学版). 2025(02): 203-211 .
    2. 蒋欣静,李仲夏,万军伟,成建梅,王志明,王玲,王铭. 柳家村隧洞水化学特征分析及涌水水源判别方法研究. 安全与环境工程. 2024(04): 158-169 .
    3. 张强,胡志伟,王毛毛,周成号. 基于主成分自组织神经网络法的测井曲线分层技术. 地质与勘探. 2024(05): 1013-1020 .
    4. 施龙青,曲兴玥,韩进. 黄土梁峁地貌矿井水水质时空变异评估与关键控制因子水源识别. 煤田地质与勘探. 2023(02): 195-206 . 本站查看
    5. 陈陆望,胡永胜,张杰,张苗,郑剑,郑忻,张媛媛,蔡欣悦,武明辉. 华北型煤田水文地球化学勘探关键技术研究进展. 煤田地质与勘探. 2023(02): 207-219 . 本站查看
    6. 赵世毫,高林,陈原望,蒋明,向天麟,申业兴,许帅. 基于水化学特征分析的近地表井壁涌水来源识别技术. 矿业研究与开发. 2023(11): 150-156 .
    7. 张苗,陈陆望,姚多喜,张杰. 宿县矿区石炭系太灰地下水化学特征及水岩相互作用. 合肥工业大学学报(自然科学版). 2022(03): 396-405 .
    8. 苏玮,姜春露,查君珍,郑刘根,谢华东,黄文迪,陈园平. 基于客观组合权-改进集对分析模型的矿井突水水源识别. 煤炭科学技术. 2022(04): 156-164 .
    9. 张胜军,丁亚恒,姜春露,李明,郑刘根. 基于水化学和氯同位素的煤矿矿井水来源识别与解析. 煤炭工程. 2022(06): 123-127 .
    10. 毛志勇,崔鹏杰,黄春娟,韩榕月. KPCA-CS-SVM下的矿井突水水源判别模型. 辽宁工程技术大学学报(自然科学版). 2021(02): 104-111 .
    11. 满孝全,魏久传,谢道雷,谢春雷. 基于水化学特征分析的突水水源判别方法. 中国科技论文. 2021(01): 76-81+90 .
    12. 朱敬忠,李凌,杨森. 基于因子分析的突水水源类型判别的研究. 矿业安全与环保. 2021(02): 87-91+96 .
    13. 施亚丽,吴基文,翟晓荣,王广涛,洪荒,毕尧山. 采动影响下皖北恒源煤矿八含水化学特征研究. 安徽理工大学学报(自然科学版). 2021(01): 31-40 .
    14. 苏俏俏,黄平华,丁风帆,胡永胜,郜鸿飞. 基于Piper-PCA-Fisher模型的矿井突水水源识别. 能源与环保. 2021(10): 122-127 .
    15. 李凌,胡友彪,刘瑜,琚棋定. 基于多元统计与Bayes判别模型的水源判别. 安徽理工大学学报(自然科学版). 2021(06): 25-31 .
    16. 刘小贺. 主成分-距离水质识别水源模型主成分的选取. 地下水. 2020(02): 23-26 .
    17. 姜子豪,胡友彪,琚棋定,周露,张淑莹. 矿井突水水源判别方法. 工矿自动化. 2020(04): 28-33 .
    18. 马济国,姜春露,朱赛君,谢毫,毕波,郑刘根. 基于主成分分析的潘谢矿区突水水源Fisher判别模型. 煤炭技术. 2020(09): 132-134 .
    19. 张靖苑. 基于主成分分析和随机配置网络的矿井突水水源判别方法研究. 煤炭工程. 2020(S2): 101-104 .
    20. 题正义,张峰,秦洪岩,朱志洁. 基于板壳和断裂力学理论的上覆采空区积水危险性判定技术. 煤田地质与勘探. 2019(01): 138-143 . 本站查看
    21. 刘国伟,马凤山,郭捷,杜云龙,侯成录,李威. 多元统计分析在滨海矿区水源识别中的应用——以三山岛金矿为例. 黄金科学技术. 2019(02): 207-215 .
    22. 董东林,李祥,林刚,卞建玲,曹成龙,吴恒. 突水水源的独立性权–模糊可变理论识别模型. 煤田地质与勘探. 2019(05): 48-53 . 本站查看
    23. 张宇,彭琪,曾开帅,唐金平,何文君,张强. Bayes判别理论在陇西黄土高原地区地下水化学分类中的应用. 甘肃水利水电技术. 2019(10): 1-5 .
    24. 邓松松. 超化煤矿突水灾害地质条件分析及防治措施. 能源与节能. 2018(06): 38-39 .
    25. 琚棋定,胡友彪,张淑莹. 基于主成分分析与贝叶斯判别法的矿井突水水源识别方法研究. 煤炭工程. 2018(12): 90-94 .

    Other cited types(16)

Catalog

    Article Metrics

    Article views (93) PDF downloads (20) Cited by(41)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return