XUE Weifeng, WANG Sujian, DENG Zengshe, HUANG Kejun, HAN Lei, JI Ruijun, LIANG Shaojian. Modification function of magnetic treatment on grouting clay slurry[J]. COAL GEOLOGY & EXPLORATION, 2019, 47(4): 117-123. DOI: 10.3969/j.issn.1001-1986.2019.04.018
Citation: XUE Weifeng, WANG Sujian, DENG Zengshe, HUANG Kejun, HAN Lei, JI Ruijun, LIANG Shaojian. Modification function of magnetic treatment on grouting clay slurry[J]. COAL GEOLOGY & EXPLORATION, 2019, 47(4): 117-123. DOI: 10.3969/j.issn.1001-1986.2019.04.018

Modification function of magnetic treatment on grouting clay slurry

Funds: 

National Basic Research Program of China(973 Program)(2014CB047100)

More Information
  • Received Date: October 17, 2018
  • Published Date: August 24, 2019
  • Clay slurry was treated through magnetization. The characteristics of the physical property change of the clay slurry after magnetic treatment such as viscosity, density, pH value, conductivity, syneresis rate, concretion rate and anti-permeability were studied. After magnetic treatment, density, viscosity and syneresis rate of the clay slurry decrease, pH, conductivity and concretion rate increase, the syneresis rate and the concretion rate are improved with the magnetization time. The magnetic treatment improves the rheological property of clay slurry, the anti-permeability performance of the cemented body of clay slurry after magnetic treatment rises greatly compared to the cemented body of clay slurry not treated by magnetization. After the magnetic treatment, the Zeta electrical potential and pH of the clay slurry increase, resulting in increase of dispersion, reducing the syneresis rate and increasing the concretion rate. The improvement of anti-permeability performance of the same quality clay slurry benefits from the significant increase of the concretion rate of the magnetically treated clay slurry, while the decrease of its viscosity results from the strong repulsion among the particles of clay slurry after the magnetic treatment.
  • [1]
    王星华. 黏土固化浆液在地下工程中的应用[M]. 北京:中国铁道出版社,1998.
    [2]
    勾攀峰,张义顺. "水泥-黏土-粉煤灰-生石灰"固化浆液性能实验[J]. 煤炭学报,2002,27(2):148-151.

    GOU Panfeng,ZHANG Yishun. Performance experiment on solidifying slurry of "cement-clay-fly ash-quicklime"[J]. Journal of China Coal Society,2007,27(2):148-151.
    [3]
    许光泉,严家平,夏小亮. 矿井底板突水新型注浆材料配比优化实验[J]. 煤炭科学技术,2010,38(12):22-24.

    XU Guangquan,YAN Jiaping,XIA Xiaoliang. Optimization experiment on mixing ratio of new grouting material to prevent mine floor water inrush[J]. Coal Science and Technology,2010,38(12):22-24.
    [4]
    张贵金,杨松林,陈安重,等. 适应深厚复杂岩土层防渗灌浆的可控性黏土水泥稳定浆材及快速配制[J]. 岩石力学与工程学报,2012,31(增刊1):3428-3436.

    ZHANG Guijin,YANG Songlin,CHEN Anzhong,et al. Development and quick-preparing of controllable clay cement stable slurry adapt to anti-seepage grouting in deep complex rock and soil stratum[J]. Chinese Journal of Rock Mechanics and Engineering,2012,31(S1):3428-3436.
    [5]
    闫新亚,杨维东,谭绍早,等. 不同有机改性黏土对海洋卡盾藻去除作用的研究[J]. 安全与环境学报,2010,10(3):45-48.

    YAN Xinya,YANG Weidong,TAN Shaozao,et al. On the effects of different organic modified clays on removing Chattonella marina[J]. Journal of Safety and Environment,2010,10(3):45-48.
    [6]
    曹豪荣,李新明,樊友杰,等. 考虑干湿循环路径的石灰改性红黏土路用性能实验研究[J]. 岩土力学,2012,33(9):2619-2624.

    CAO Haorong,LI Xinming,FAN Youjie,et al. Experimental study of pavement performances of lime-treated laterite soil considering drying-wetting cycle paths[J]. Rock and Soil Mechanics,2012,33(9):2619-2624.
    [7]
    董祎挈,陆海军,李继祥,等. 垃圾填埋场污泥灰改性黏土衬垫的强度特性及微观结构[J]. 岩土力学,2015,36(增刊1):187-192.

    DONG Yiqie,LU Haijun,LI Jixiang,et al. Strength properties and microstructure of landfill clay liner containing sewage sludge ash[J]. Rock and Soil Mechanics,2015,36(S1):187-192.
    [8]
    侍倩,李翠华. 酸、碱对黏土物理性质的影响的实验研究[J]. 武汉大学学报:工学版,2001,34(5):84-87.

    SHI Qian,LI Cuihua. Laboratory study on effects of acid and alkali upon physical properties of clay[J]. Engineering Journal of Wuhan University(Engineering Science),2001,34(5):84-87.
    [9]
    卢雪清,党进谦,樊恒辉,等. 不同介质环境对黏土分散性的影响及分散性黏土改性研究[J]. 西北农林科技大学学报(自然科学版),2011,39(5):208-214.

    LU Xueqing,DANG Jinqian,FAN Henghui,et al. Effect of different media environment on dispersion of clay and treatment with lime on the dispersive soil[J]. Journal of Northwest A & F University(Natural Science Edition),2011,39(5):208-214.
    [10]
    王中妮,樊恒辉,贺智强,等. 分散性土改性剂对土的分散性和抗拉强度的影响[J]. 岩石力学与工程学报,2015,34(2):425-432.

    WANG Zhongni,FAN Henghui,HE Zhiqiang,et al. Influence of modifiers on dispersity and tensile strength of dispersive clay[J]. Chinese Journal of Rock Mechanics and Engineering,2015,34(2):425-432.
    [11]
    王波. 磁化处理对钻井液性能影响的初步研究[J]. 油田化学,1990,7(4):339-342.

    WANG Bo. A preliminary study on properties of drilling fluids as influenced by magnetic treatment[J]. Oilfield Chemistry,1990,7(4):339-342.
    [12]
    王厚燕. 磁化钻井液在中原油田的应用[J]. 钻井液与完井液,1994,11(5):40-43.

    WANG Houyan. Application of mud magnetization in Zhongyuan oil field[J]. Drilling Fluid & Completion Fluid,1994,11(5):40-43.
    [13]
    丁岗,周开学,陈长恩,等. 磁化钻井液应用性实验研究[J]. 石油大学学报(自然科学版),1995,19(4):35-39.

    DING Gang,ZHOU Kaixue,CHEN Chang'en,et al. Experimental study on the application of magnetized drilling fluid[J]. Journal of the University of Petroleum,1995,19(4):35-39.
    [14]
    王贵和,郑艳芹. 磁化膨润土浆流变性实验研究[J]. 石油钻探技术,1997,25(3):27-28.

    WANG Guihe,ZHENG Yanqin. Lab study on the rheology of magnetized bentonite muds[J]. Petroleum Drilling Techniques,1997,25(3):27-28.
    [15]
    庄杰,刘孝义,梁冬梅. 磁处理对黏土矿物比表面的影响[J]. 沈阳农业大学学报,1996,27(2):148-153.

    ZHUANG Jie,LIU Xiaoyi,LIANG Dongmei. Effects of magnetic treatment on specific surface area of clay minerals[J]. Journal of Shenyang Agricultural University,1996,27(2):148-153.
    [16]
    SHAH K H,ALI S,SHAH F,et al. Magnetic oxide nanoparticles(Fe3O4) impregnated bentonite clay as a potential adsorbent for Cr(Ⅲ) adsorption[J]. Materials Research Express,2017,5(9):96-102.
    [17]
    SUNDARAM J S E,DHARMALINGAM P. Synthesis and characterization of magnetized clay polymer nanocomposites and its adsorptive behaviour in removal of Chromium(VI) from aqueous phase[J]. Asian Journal of Chemistry,2018,30(3):667-672.
    [18]
    韩磊,薛卫峰,陈通,等. 一种可调磁流体磁化装置:陕西,CN205419874U[P]. 2016-08-03.
    [19]
    薛卫峰,王苏健,邓增社,等. 一种基于磁化水的底板防水注浆材料及其制备方法:陕西,CN105753414A[P]. 2016-07-13.
    [20]
    邢军,徐俊杰,丁仕强,等. 絮凝处理后固相浓度对悬浮液黏度的影响研究[J]. 过滤与分离,2010,20(4):1-3.

    XING Jun,XU Junjie,DING Shiqiang,et al. Studying the effect of solid concentration on the viscosity of flocculated suspensions[J]. Journal of Filtration & Separation,2010,20(4):1-3.
  • Related Articles

    [1]XU Dongjing, ZHANG Ruiqing, GAO Weifu, JIANG Haonan, ZHU Haifeng, LI Ye, XIA Zhicun. Zonal prediction of the heights of water-conducting fracture zones under varying overburden types in North China-type coalfields[J]. COAL GEOLOGY & EXPLORATION, 2025, 53(3): 177-189. DOI: 10.12363/issn.1001-1986.24.10.0625
    [2]CHEN Luwang, HU Yongsheng, ZHANG Jie, ZHANG Miao, ZHENG Jian, ZHENG Xin, ZHANG Yuanyuan, CAI Xinyue, WU Minghui. Progress of research on key technologies for hydrogeochemical prospecting in North China type coalfield[J]. COAL GEOLOGY & EXPLORATION, 2023, 51(2): 207-219. DOI: 10.12363/issn.1001-1986.23.01.0025
    [3]DING Tongfu, WANG Minhua, ZHAO Junfeng. Genesis analysis and study on tectonic control on water of Huainan North China-type coal field[J]. COAL GEOLOGY & EXPLORATION, 2020, 48(4): 102-108. DOI: 10.3969/j.issn.1001-1986.2020.04.015
    [4]WANG Zitao, LIU Qimeng, LIU Yu. Spatial distribution and formation of groundwater hydrochemistry in Huainan coalfield[J]. COAL GEOLOGY & EXPLORATION, 2019, 47(5): 40-47. DOI: 10.3969/j.issn.1001-1986.2019.05.006
    [5]HU Baolin, GAO Deyi, LIU Huihu, XU Hongjie, ZHANG Ping, SUN Fei. Relationship between sedimentary facies and source rocks of Permian strata in Huainan coalfield[J]. COAL GEOLOGY & EXPLORATION, 2017, 45(6): 1-6,13. DOI: 10.3969/j.issn.1001-1986.2017.06.001
    [6]WU Dun, ZHANG Wenyong, ZHU Wenwei, ZHOU Xuenian, DING Hai, ZHAO Zhiyi. The exploration and development of unconventional oil and gas in the Taiyuan Formation from Huainan coalfield[J]. COAL GEOLOGY & EXPLORATION, 2017, 45(4): 13-18. DOI: 10.3969/j.issn.1001-1986.2017.04.003
    [7]GAO Deyi, PING Wenwen, HU Baolin, LIU Huihu, XU Hongjie, CHENG Qiao, ZHANG Ping. Geochemistry characteristics of trace elements of mud shale of Shanxi Formation in Huainan coalfield and its significance[J]. COAL GEOLOGY & EXPLORATION, 2017, 45(2): 14-21. DOI: 10.3969/j.issn.1001-1986.2017.02.003
    [8]LI Yong-jun, PENG Su-ping. Classifications and characteristics of karst collapse columns in North China coalfields[J]. COAL GEOLOGY & EXPLORATION, 2006, 34(4): 53-57.
    [9]SONG Chuan-zhong, ZHU Guang, LIU Guo-sheng, NIU Man-lan. Identificating of structure and its dynamics control of Huainan coalfield[J]. COAL GEOLOGY & EXPLORATION, 2005, 33(1): 11-15.
    [10]ZHANG Hong, ZHENG Yu-zhu, ZHENG Gao-sheng, WANG Sheng-zu. Extensional structure under the Fufeng-nappe in Huainan Coalfield, Anhui Province, and its formative mechanism[J]. COAL GEOLOGY & EXPLORATION, 2003, 31(3): 1-4.
  • Cited by

    Periodical cited type(25)

    1. 郑剑,陈陆望,张杰,张苗,郑忻,胡永胜. 贝叶斯突水水源判别与反向水文地球化学模拟的含水层水力分析. 合肥工业大学学报(自然科学版). 2025(02): 203-211 .
    2. 蒋欣静,李仲夏,万军伟,成建梅,王志明,王玲,王铭. 柳家村隧洞水化学特征分析及涌水水源判别方法研究. 安全与环境工程. 2024(04): 158-169 .
    3. 张强,胡志伟,王毛毛,周成号. 基于主成分自组织神经网络法的测井曲线分层技术. 地质与勘探. 2024(05): 1013-1020 .
    4. 施龙青,曲兴玥,韩进. 黄土梁峁地貌矿井水水质时空变异评估与关键控制因子水源识别. 煤田地质与勘探. 2023(02): 195-206 . 本站查看
    5. 陈陆望,胡永胜,张杰,张苗,郑剑,郑忻,张媛媛,蔡欣悦,武明辉. 华北型煤田水文地球化学勘探关键技术研究进展. 煤田地质与勘探. 2023(02): 207-219 . 本站查看
    6. 赵世毫,高林,陈原望,蒋明,向天麟,申业兴,许帅. 基于水化学特征分析的近地表井壁涌水来源识别技术. 矿业研究与开发. 2023(11): 150-156 .
    7. 张苗,陈陆望,姚多喜,张杰. 宿县矿区石炭系太灰地下水化学特征及水岩相互作用. 合肥工业大学学报(自然科学版). 2022(03): 396-405 .
    8. 苏玮,姜春露,查君珍,郑刘根,谢华东,黄文迪,陈园平. 基于客观组合权-改进集对分析模型的矿井突水水源识别. 煤炭科学技术. 2022(04): 156-164 .
    9. 张胜军,丁亚恒,姜春露,李明,郑刘根. 基于水化学和氯同位素的煤矿矿井水来源识别与解析. 煤炭工程. 2022(06): 123-127 .
    10. 毛志勇,崔鹏杰,黄春娟,韩榕月. KPCA-CS-SVM下的矿井突水水源判别模型. 辽宁工程技术大学学报(自然科学版). 2021(02): 104-111 .
    11. 满孝全,魏久传,谢道雷,谢春雷. 基于水化学特征分析的突水水源判别方法. 中国科技论文. 2021(01): 76-81+90 .
    12. 朱敬忠,李凌,杨森. 基于因子分析的突水水源类型判别的研究. 矿业安全与环保. 2021(02): 87-91+96 .
    13. 施亚丽,吴基文,翟晓荣,王广涛,洪荒,毕尧山. 采动影响下皖北恒源煤矿八含水化学特征研究. 安徽理工大学学报(自然科学版). 2021(01): 31-40 .
    14. 苏俏俏,黄平华,丁风帆,胡永胜,郜鸿飞. 基于Piper-PCA-Fisher模型的矿井突水水源识别. 能源与环保. 2021(10): 122-127 .
    15. 李凌,胡友彪,刘瑜,琚棋定. 基于多元统计与Bayes判别模型的水源判别. 安徽理工大学学报(自然科学版). 2021(06): 25-31 .
    16. 刘小贺. 主成分-距离水质识别水源模型主成分的选取. 地下水. 2020(02): 23-26 .
    17. 姜子豪,胡友彪,琚棋定,周露,张淑莹. 矿井突水水源判别方法. 工矿自动化. 2020(04): 28-33 .
    18. 马济国,姜春露,朱赛君,谢毫,毕波,郑刘根. 基于主成分分析的潘谢矿区突水水源Fisher判别模型. 煤炭技术. 2020(09): 132-134 .
    19. 张靖苑. 基于主成分分析和随机配置网络的矿井突水水源判别方法研究. 煤炭工程. 2020(S2): 101-104 .
    20. 题正义,张峰,秦洪岩,朱志洁. 基于板壳和断裂力学理论的上覆采空区积水危险性判定技术. 煤田地质与勘探. 2019(01): 138-143 . 本站查看
    21. 刘国伟,马凤山,郭捷,杜云龙,侯成录,李威. 多元统计分析在滨海矿区水源识别中的应用——以三山岛金矿为例. 黄金科学技术. 2019(02): 207-215 .
    22. 董东林,李祥,林刚,卞建玲,曹成龙,吴恒. 突水水源的独立性权–模糊可变理论识别模型. 煤田地质与勘探. 2019(05): 48-53 . 本站查看
    23. 张宇,彭琪,曾开帅,唐金平,何文君,张强. Bayes判别理论在陇西黄土高原地区地下水化学分类中的应用. 甘肃水利水电技术. 2019(10): 1-5 .
    24. 邓松松. 超化煤矿突水灾害地质条件分析及防治措施. 能源与节能. 2018(06): 38-39 .
    25. 琚棋定,胡友彪,张淑莹. 基于主成分分析与贝叶斯判别法的矿井突水水源识别方法研究. 煤炭工程. 2018(12): 90-94 .

    Other cited types(16)

Catalog

    Article Metrics

    Article views (96) PDF downloads (13) Cited by(41)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return