LI Yang, WANG Wenxue, XIAO Hang, SUN Yi, WANG Yun, DI Mengna. The seepage characteristics of a single well dewatering from an unconfined aquifer bottom[J]. COAL GEOLOGY & EXPLORATION, 2019, 47(3): 154-159,165. DOI: 10.3969/j.issn.1001-1986.2019.03.024
Citation: LI Yang, WANG Wenxue, XIAO Hang, SUN Yi, WANG Yun, DI Mengna. The seepage characteristics of a single well dewatering from an unconfined aquifer bottom[J]. COAL GEOLOGY & EXPLORATION, 2019, 47(3): 154-159,165. DOI: 10.3969/j.issn.1001-1986.2019.03.024

The seepage characteristics of a single well dewatering from an unconfined aquifer bottom

Funds: 

National Natural Science Foundation of China(41602298)

More Information
  • Received Date: October 05, 2018
  • Published Date: June 24, 2019
  • Dewatering from an aquifer bottom for drain and depressurization is one common method to ensure safety mining. This method is significantly different from pumping from the ground. In order to study the seepage characteristics of the dewatering hole(well), the seepage characteristics of a single well dewatering from an unconfined aquifer bottom was taken as an example and studied using numerical simulation method. The results show that when lw<lc, the pore water pressure above the dewatering well is greater than zero, which presents the rule of increasing first then decreasing from bottom to top, and the seepage flow increases with well length following an exponential function relationship. When lwlc, the seepage characteristics and seepage flow of the incomplete dewatering well is the same with the complete dewatering well. The seepage flow increases with the well radius following a power relationship with the exponent less than 1. By substituting s+lw into Dupuit formula for unconfined complete wells instead of drawdown s, a revised formula was proposed which could be used to calculate water flow for uncomplete dewatering wells with a more accurate result. This study will provide an important theoretical basis for understanding the seepage characteristics and more effectively drilling of the dewatering wells.
  • [1]
    Niskovskiy Y,Vasianovich A. Investigation of possibility to apply untraditional and ecologically good methods of coal mining under sea bed[C]//The Sixth International Offshore and Polar Engineering Conference. International Society of Offshore and Polar Engineers,1996,51-53.
    [2]
    SUN Yajun,XU Zhimin,DONG Qinghong,et al. Forecasting water disaster for a coal mine under the Xiaolangdi reservoir[J]. Journal of China University of Mining and Technology,2008,18(4):516-520.
    [3]
    ZHANG Jincai,SHEN Baohong. Coal mining under aquifers in China:A case study[J]. International Journal of Rock Mechanics and Mining Sciences,2004,41(4):629-639.
    [4]
    LI Tie,MEI Tingting,SUN Xuehui,et al. A study on a water-inrush incident at Laohutai coalmine[J]. International Journal of Rock Mechanics and Mining Sciences,2013,59:151-159.
    [5]
    武雄,于青春,汪小刚,等. 地表水体下煤炭资源开采研究[J]. 岩石力学与工程学报,2006,25(5):1029-1036.

    WU Xiong,YU Qingchun,WANG Xiaogang,et al. Exploitation of coal resources under water body[J]. Chinese Journal of Rock Mechanics and Engineering,2006,25(5):1029-1036.
    [6]
    武强,赵苏启,董书宁,等. 煤矿防治水手册[M]. 北京:煤炭工业出版社,2013.
    [7]
    方俊,张杰. 定向长钻孔超前疏放顶板水技术在枣泉煤矿的应用[J]. 煤炭工程,2016,48(7):56-59.

    FANG Jun,ZHANG Jie. Application of advance roof dewatering with directional long borehole in Zaoquan mine[J]. Coal Engineering,2016,48(7):56-59.
    [8]
    HANG Yuan,ZHANG Gailing,YANG Guoyong. Numerical simulation of dewatering thick unconsolidated aquifers for safety of underground coal mining[J]. Mining Science and Technology(China),2009,19(3):312-316.
    [9]
    尹尚先,张祥维,徐慧,等. "大井法" 中渗透系数及含水层厚度的优化[J]. 煤田地质与勘探,2015,43(5):53-56.

    YIN Shangxian,ZHAGN Xiangwei,XU Hui,et al. Op-timization of permeability coefficient and aquifer thickness in large-well-method[J]. Coal Geology & Exploration,2015,43(5):53-56.
    [10]
    陈冲,李文尧,徐世光. 大井法在煤矿涌水量预测中的应用[J]. 煤炭技术,2017,36(11):199-201.

    CHEN Chong,LI Wenrao,XU Shiguang. Application of large diameter method in estimation water inflow of coal mine[J]. Coal Technology,2017,36(11):199-201.
    [11]
    李明山. 伯努利方程与井下探放水钻孔涌水量计算[J]. 矿业安全与环保,1999,26(2):37-38.

    LI Mingshan. Bernouli Equation and calculation of water inflow rate from probing and discharging[J]. Mining Safety & Environmental Protection,1999,26(2):37-38.
    [12]
    陈实,董书宁,李竞生,等. 煤矿工作面顶板倾斜钻孔疏放水井流计算方法[J]. 煤炭学报,2016,41(6):1517-1523.

    CHEN Shi,DONG Shuning,LI Jingsheng,et al. Analytical solution for slanted well in the roof of coal mine working face[J]. Journal of China Coal Society,2016,41(6):1517-1523.
    [13]
    赵宝峰. 灰色关联度在井下钻孔疏放水效果分析中的应用[J]. 辽宁工程技术大学学报(自然科学版),2013,32(3):289-292.

    ZHAO Baofeng. Application of gray correlation in the effect analysis of underground drilling water drainage[J]. Journal of Liaoning Technical University(Natural Science Edition),2013,32(3):289-292.
    [14]
    靳月灿,孙亚军,徐智敏,等. 收缩开采期封闭不良钻孔的涌水量预测研究[J]. 中国煤炭,2012,38(6):99-103.

    JIN Yuecan,SUN Yajun,XU Zhimin,et al. Research on water inflow prediction from bad sealed boreholes in contraction coal mining[J]. China Coal,2012,38(6):99-103.
    [15]
    王文学,隋旺华. 某矿第四系底部含水层降水井群优化布置[J]. 煤田地质与勘探,2011,39(2):30-33.

    WANG Wenxue,SUI Wanghua. Optimization for dewatering well design in the Quaternary bottom aquifer[J]. Coal Geology & Exploration,2011,39(2):30-33.
  • Related Articles

    [1]TIAN Han, WU Rongxin, HU Ze’an, YANG Qiaonan. Tomography method for adjacent channel frequency shift of transmitted in-Seam waves[J]. COAL GEOLOGY & EXPLORATION, 2022, 50(11): 187-194. DOI: 10.12363/issn.1001-1986.22.04.0221
    [2]HOU Yanwei, YAO Weihua. Constrained inversion method and application effect of TEM data of fixed source loop device[J]. COAL GEOLOGY & EXPLORATION, 2019, 47(4): 172-177. DOI: 10.3969/j.issn.1001-1986.2019.04.026
    [3]LYU Huaxin, CUI Weixiong, FU Zhengqing, GUAN Qi. Tomography technique of relative transmission coefficient of in-seam wave in coal mining face[J]. COAL GEOLOGY & EXPLORATION, 2017, 45(3): 147-150. DOI: 10.3969/j.issn.1001-1986.2017.03.027
    [4]ZHOU Weixi, CHEN Yuhua, YANG Yongguo, LUO Jinhui. 3D modeling and visualization of coal reservoir based on corner-point grid[J]. COAL GEOLOGY & EXPLORATION, 2016, 44(5): 53-57. DOI: 10.3969/j.issn.1001-1986.2016.05.010
    [5]LI Yu, YANG De-yi, YAN Pei. A method of creating quickly an initial model in tomography inversion[J]. COAL GEOLOGY & EXPLORATION, 2009, 37(6): 67-70. DOI: 10.3969/j.issn.1001-1986.2009.06.016
    [6]ZHAO Hai-yan, GONG Wei-li. Characterization on anisotropic fractures of coal and rocks by computed X-ray tomography based on image segmentation[J]. COAL GEOLOGY & EXPLORATION, 2009, 37(6): 14-18. DOI: 10.3969/j.issn.1001-1986.2009.06.004
    [7]LI Yuan, HU Bao-lin, DONG Chang-wei, TANG Li-hua, WANG Hong-zhi, XU De-jin, MENG Bo. Application of logging constrained inversion technology in prediction of magmatic rock distribution in coal mines[J]. COAL GEOLOGY & EXPLORATION, 2009, 37(5): 68-71. DOI: 10.3969/j.issn.1001-1986.2009.05.017
    [8]ZHANG Wei-guo, KUANG Ling-li. Research and application of two-dimensional high density resistivity tomography[J]. COAL GEOLOGY & EXPLORATION, 2008, 36(2): 55-58.
    [9]WANG Qi. The special processing of tomography to field data of tunnels perspective[J]. COAL GEOLOGY & EXPLORATION, 2001, 29(4): 55-57.
    [10]Cheng Jiulong, Yu Shijian, Qiu Wei, Cheng Hongliang, Song Zhenjiang. HIGH ACCURACY COMPUTER TOMOGRAPHY OF ELECTROMAGNETIC WAVE ON WORKING FACES AND ITS APPLICATION[J]. COAL GEOLOGY & EXPLORATION, 1999, 27(4): 62-64.
  • Cited by

    Periodical cited type(11)

    1. 刘春龙,徐青苗,刘丰永,胡芳芳,吴正富,张缘. 顺层岩质边坡稳定性简易解析公式. 公路. 2025(03): 11-18 .
    2. 刘英朴,许锐,李寻昌,任权. 基于微分演化算法的抗滑桩优化模型. 地下水. 2024(04): 136-140 .
    3. 宁永香,崔希民,崔建国. 基于ABC-GRNN组合模型的露天矿边坡变形预测. 煤田地质与勘探. 2023(03): 65-72 . 本站查看
    4. 沈简,陈苏萌. 高边坡施工安全风险评估指标重要性排序研究. 工程建设与设计. 2023(11): 258-260 .
    5. 荆宇涵. 甘肃省清水县王家山滑坡地质灾害特征及稳定性评价. 冶金管理. 2023(13): 95-97 .
    6. 欧阳刚. 滑坡地质灾害勘查与防治浅析. 冶金管理. 2021(09): 65-66 .
    7. 谢明钧,姚院峰,胡致远. 印尼某火电厂A2—A4区边坡防治项目工程实录. 水利与建筑工程学报. 2020(05): 215-220 .
    8. 熊超,赵鹏,武超,刘光华. 岩溶区层状岩质基坑边坡变形机制及治理分析——以天生三桥为例. 科学技术与工程. 2019(29): 260-265 .
    9. 颉保亮,廖志威,石富军,邹平波. 大型金属矿山边坡滑坡的成因及治理措施. 世界有色金属. 2019(19): 143-144 .
    10. 张思远. 江习古高速公路JK64+280~600段滑坡成因机制及治理. 产业与科技论坛. 2018(14): 89-91 .
    11. 肖拥军,王泰,李玉泉. 含软弱夹层库岸复杂滑坡体形成机制. 煤田地质与勘探. 2018(06): 133-137 . 本站查看

    Other cited types(1)

Catalog

    Article Metrics

    Article views PDF downloads Cited by(12)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return