YANG Yanqing, ZHANG Xiaodong, XU Yakun, ZHANG Peng, WANG Kun, ZHU Chunhui. The characteristics of organic matter in coal-measure source rocks and coal-measure gas resource potential in eastern Henan Province[J]. COAL GEOLOGY & EXPLORATION, 2019, 47(2): 111-120. DOI: 10.3969/j.issn.1001-1986.2019.02.018
Citation: YANG Yanqing, ZHANG Xiaodong, XU Yakun, ZHANG Peng, WANG Kun, ZHU Chunhui. The characteristics of organic matter in coal-measure source rocks and coal-measure gas resource potential in eastern Henan Province[J]. COAL GEOLOGY & EXPLORATION, 2019, 47(2): 111-120. DOI: 10.3969/j.issn.1001-1986.2019.02.018

The characteristics of organic matter in coal-measure source rocks and coal-measure gas resource potential in eastern Henan Province

Funds: 

National Natural Science Foundation of China(41372162)

More Information
  • Received Date: May 30, 2018
  • Published Date: April 24, 2019
  • In order to evaluate the hydrocarbon generation potential of coal-measure source rocks in eastern Henan Province, based on the measurement results of organic carbon content, vitrinite reflectance and the identification of maceral and type of kerogen in source rocks, the organic geochemical characteristics and the resource potential of coal-measure gas in different blocks of eastern Henan Province were comprehensively analyzed, and favorable blocks for coal-measure gas exploration were designated. The results show that the organic carbon mass fraction of coal-measure source rocks presents low as a whole(less than 1.5%). Kerogen in coal-measures source rocks is mainly of type Ⅲ and Ⅱ2 can be locally seen in the source rocks, so it can be concluded the source rocks are favorable for hydrocarbon generation. The coal-measure strata has undergone twice mass hydrocarbon generation stage(Middle Permian to Middle-Late Triassic and Late Jurassic to Early Cretaceous), the thermal evolution extent of source rocks is relatively high. The vitrinite reflectance ranges from 1.44% to 3.80% and 2.83% in average, so the organic matter is classified form the high mature to over high mature stage, hydrocarbon generation is adequate. As a whole, the hydrocarbon generation potential of source rocks in the area belongs to bad-medium standard, sandstone and mudstone reservoir property is relatively good, gas content is high. The coal measures are mainly fine sandstone, coal seam, mudstone with good sealing property, which have good preservation conditions. The study shows that the hydrocarbon source rocks in Suixi block are characterized by shallow burial depth, large effective thickness, high porosity, high gas content and high gas saturation, high maturity of organic matter, are favorable blocks for the exploration of coal-measure gas in eastern Henan Province.
  • [1]
    王佟,王庆伟,傅雪海. 煤系非常规天然气的系统研究及其意义[J]. 煤田地质与勘探,2014,42(1):24-27.

    WANG Tong,WANG Qingwei,FU Xuehai. The significance and the systematic research of the unconventional gas in coal measures[J]. Coal Geology & Exploration,2014,42(1):24-27.
    [2]
    曹代勇,刘亢,刘金城,等. 鄂尔多斯盆地西缘煤系非常规气共生组合特征[J]. 煤炭学报,2016,41(2):277-285.

    CAO Daiyong,LIU Kang,LIU Jincheng,et al. Combination characteristics of unconventional gas in coal measure in the west margin of Ordos basin[J]. Journal of China Coal Society,2016,41(2):277-285.
    [3]
    王猛,唐洪明,刘枢,等. 砂岩差异致密化成因及其对储层质量的影响:以鄂尔多斯盆地苏里格气田东区上古生界二叠系为例[J]. 中国矿业大学学报,2017,46(6):1282-1300.

    WANG Meng,TANG Hongming,LIU Shu,et al. Formation mechanism of differential sandstone densification modes and its impact on reservoir quality:A case study of Upper Paleozoic Permian in eastern part of Sulige gas field,Ordos basin[J]. Journal of China University of Mining & Technology,2017,46(6):1282-1300.
    [4]
    张小东,朱春辉,林俊峰,等. 豫东马桥详查区煤系气成藏地质特征[J]. 河南理工大学学报(自然科学版),2018,37(5):40-46.

    ZHANG Xiaodong,ZHU Chunhui,LIN Junfeng,et al. Geological reservoir properties of coal measures gas in Maqiao survey area of eastern Henan Province[J]. Journal of Henan Polytechnic University(Natural Science),2018,37(5):40-46.
    [5]
    焦大庆. 华北南部油气地质条件[M]. 北京:地质出版社,2009.
    [6]
    秦建中. 华北地区煤系烃源层油气生成运移评价[M]. 北京:科学出版社,2002.
    [7]
    陈迎宾,张寿庭. 柴达木盆地德令哈拗陷中侏罗统烃源岩有机地球化学特征[J]. 成都理工大学学报(自然科学版),2011,38(2):191-198.

    CHEN Yingbin,ZHANG Shouting. Organic geochemical characteristics of Middle Jurassic hydrocarbon source rocks in Delingha depression of Qaidam basin[J]. Journal of Chengdu University of Technology(Natural Sciences),2011,38(2):191-198.
    [8]
    韩文学,麻伟娇,陶士振,等. 鄂尔多斯盆地上古生界灰岩烃源岩生烃潜力评价[J]. 地球科学,2018,43(2):599-609.

    HAN Wenxue,MA Weijiao,TAO Shizhen,et al. Hydro-carbon generation potential evaluation of Upper Paleozoic limestone in Ordos basin[J]. Journal of Earth Science,2018,43(2):599-609.
    [9]
    龚大兴,林金辉,唐云凤,等. 上扬子地台北缘古生界海相烃源岩有机地球化学特征[J]. 岩性油气藏,2010,22(3):31-37.

    GONG Daxing,LIN Jinhui,TANG Yunfeng,et al. Organic geochemical characteristics of Paleozoic marine source rocks in northern margin of upper Yangtze platform[J]. Lithologic Reservoirs,2010,22(3):31-37.
    [10]
    姚多喜. 镜质组反射率的抑制作用[J]. 辽宁工程技术大学学报,1999,18(4):369-372.

    YAO Duoxi. The inhibition of vitrinite reflectance[J]. Journal of Liaoning Technical University,1999,18(4):369-372.
    [11]
    余和中,吕福亮,郭庆新,等. 华北板块南缘原型沉积盆地类型与构造演化[J]. 石油实验地质,2005,27(2):111-117.

    YU Hezhong,LYU Fuliang,GUO Qingxin,et al. Proto-sediment basin types and tectonic evolution in the southern edge of North China place[J]. Petroleum Geology and Experiment,2005, 27(2):111-117.
    [12]
    陈建平,梁狄刚,张水昌,等. 中国古生界海相烃源岩生烃潜力评价标准与方法[J]. 地质学报,2012,86(7):1132-1142.

    CHEN Jianping,LIANG Digang,ZHANG Shuichang,et al. Evalution criterion and methods of the hydrocarbon generation potential for China's Paleozoic marine source rocks[J]. Acta Geologica Sinica,2012,86(7):1132-1142.
    [13]
    陈建平,赵长毅,何忠华. 煤系有机质生烃潜力评价标准探讨[J]. 石油勘探与开发,1997, 24(1):1-5.

    CHEN Jianpin,ZHAO Changyi,HE Zhonghua,et al.Discussion on evaluation criteria for hydrocarbon potential of organic matter in coal measures[J]. Petroleum Exploration and Development,1997,24(1):1-5.
  • Related Articles

    [1]TONG Jiangnan, WANG Feng, ZHANG Feng, HOU Wei, LI Zhongbai, JI Liang, JIANG Yanan, SUN Wei. Application of five seismic attributes in natural fracture prediction for deep coalbed methane production along the eastern margin of the Ordos Basin[J]. COAL GEOLOGY & EXPLORATION, 2025, 53(4): 222-234. DOI: 10.12363/issn.1001-1986.24.08.0547
    [2]YIN Haiyang, CHEN Tongjun, SONG Xiong, XU Haicheng, LI Wan. Methods for predicting the thickness of coal seams based on seismic attribute optimization and machine learning[J]. COAL GEOLOGY & EXPLORATION, 2023, 51(5): 164-170. DOI: 10.12363/issn.1001-1986.22.10.0801
    [3]ZENG Aiping, ZHANG Jiawei, REN Enming, LIU Tao, JIANG Fei, LIU Xingjin, SU Huairui. Research on the coal thickness prediction method based on VMD and SVM[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(6): 243-250. DOI: 10.3969/j.issn.1001-1986.2021.06.029
    [4]CHEN Tao, ZHANG Zhansong, ZHOU Xueqing, GUO Jianhong, XIAO Hang, TAN Chenyang, QIN Ruibao, YU Jie. Prediction model of coalbed methane content based on well logging parameter optimization[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(3): 227-235, 243. DOI: 10.3969/j.issn.1001-1986.2021.03.029
    [5]ZANG Zijing, WU Haibo, ZHANG Pingsong, DONG Shouhua. Prediction of coal seam gas content based on ABC-BP model[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(2): 152-158. DOI: 10.3969/j.issn.1001-1986.2021.02.019
    [6]GAO Weidong, WANG Zhengshuai. Forecast of inrushed water volume grade from coal floor based on support vector machine with particle swarm optimization[J]. COAL GEOLOGY & EXPLORATION, 2012, 40(6): 44-47. DOI: 10.3969/j.issn.1001-1986.2012.06.010
    [7]TIAN Wei, SUN Xiaofei, ZHANG Yanyu, LI Weidong, SUN Renyuan. Type curves for coalbed methane production prediction in Fanzhuang[J]. COAL GEOLOGY & EXPLORATION, 2012, 40(4): 25-28. DOI: 10.3969/j.issn.1001-1986.2012.04.006
    [8]SHI Juntai, LI Xiangfang, ZHANG Dongling, HU Xiaohu, LI Qian, HU Suming, WU Keliu. Optimization of well pattern in the development of coalbed methane through vertical wells[J]. COAL GEOLOGY & EXPLORATION, 2012, 40(2): 28-30. DOI: 10.3969/j.issn.1001-1986.2012.02.007
    [9]ZHANG Pei-he, LI Gui-hong, LI Jian-wu. The review on the predictive methodology of coalbed methane recovery efficiency[J]. COAL GEOLOGY & EXPLORATION, 2006, 34(5): 26-30.
    [10]JIAO Si-hong, QIN Yong, QU Yong-hua. A new dynamic forecast model of coalbed methane production[J]. COAL GEOLOGY & EXPLORATION, 2001, 29(2): 28-30.
  • Cited by

    Periodical cited type(18)

    1. 王博睿,张远航. 含隐伏断层底板原生缺陷致灾前兆研究. 煤炭技术. 2025(01): 216-220 .
    2. 王勤明,刘艳杰. 济阳煤矿底板突水危险性评价. 内蒙古煤炭经济. 2024(07): 58-60 .
    3. 左建平,吴根水. 深部底板水锤突水效应及递进–导升力学模型研究. 岩石力学与工程学报. 2024(08): 1852-1869 .
    4. 李远. 微震监测技术在煤矿顶底板裂隙发育探测规律的研究与应用. 煤炭科技. 2024(04): 225-230 .
    5. 王秉文,查文华,鲁海峰. 深部开采环境下底板隔水关键层深梁力学分析. 煤田地质与勘探. 2024(09): 80-91 . 本站查看
    6. 陈光波,刘凤旭. 基于F-ANP模型的煤矿突水危险性评价. 矿业安全与环保. 2023(04): 129-134 .
    7. 鲁晶津,王云宏,崔伟雄,王冰纯,段建华,南汉晨,杨伟. 矿井水害音频电透视法监测水槽物理模拟试验研究. 煤炭科学技术. 2023(S1): 265-274 .
    8. 赵建忠,刘兴学,哈斯特尔·胡完. 煤层底板水对煤层开采的内在影响. 露天采矿技术. 2023(06): 11-14 .
    9. 李回贵,苏德国,孙维,许国胜,王军. 黔北煤田灰岩含水层对开采13号煤层的影响研究. 矿业安全与环保. 2023(06): 130-135 .
    10. 田凡凡,薛喜成. 煤层底板开采破坏深度研究综述. 能源与环保. 2022(01): 289-298 .
    11. 高耀全,高银贵,陆自清,孔皖军. 基于透明地质的唐家会煤矿奥灰水防治技术. 煤田地质与勘探. 2022(01): 101-108 . 本站查看
    12. 郭国强. 综放开采特厚煤层采场底板破坏规律研究. 煤田地质与勘探. 2022(08): 107-115 . 本站查看
    13. 薛岚华. 九里山矿底板突水监测预警技术的实践应用. 山东煤炭科技. 2021(02): 148-150 .
    14. 李鹏. 矿井综采工作面底板突水综合监测技术研究. 山西化工. 2021(01): 61-63 .
    15. 王皓,董书宁,乔伟,姬亚东,朱开鹏,周振方,宁殿艳,尚宏波. 矿井水害防控远程服务云平台构建与应用. 煤田地质与勘探. 2021(01): 208-216 . 本站查看
    16. 高银贵,孔皖军,陈永春,薛贤明,郑刘根,常成林,姜春露,国伟,雷锋,王刚. 特厚煤层综放开采下工作面底板岩层破坏特征. 能源环境保护. 2021(06): 68-75 .
    17. 程胜,邹素. 网络并行电法仪在煤矿底板动态监测中的应用. 山东煤炭科技. 2021(12): 133-135 .
    18. 张爱华,陈建东. 微震监测地质异常对工作面回采影响分析. 煤炭与化工. 2021(12): 40-43 .

    Other cited types(10)

Catalog

    Article Metrics

    Article views (60) PDF downloads (16) Cited by(28)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return