GAO Wei, HAN Zhongqin, JIN Jun, BAI Lin, ZHOU Peiming. Occurrence characteristics and assessment of favorable areas of coalbed methane exploration in Liupanshui coalfield[J]. COAL GEOLOGY & EXPLORATION, 2018, 46(5): 81-89. DOI: 10.3969/j.issn.1001-1986.2018.05.013
Citation: GAO Wei, HAN Zhongqin, JIN Jun, BAI Lin, ZHOU Peiming. Occurrence characteristics and assessment of favorable areas of coalbed methane exploration in Liupanshui coalfield[J]. COAL GEOLOGY & EXPLORATION, 2018, 46(5): 81-89. DOI: 10.3969/j.issn.1001-1986.2018.05.013

Occurrence characteristics and assessment of favorable areas of coalbed methane exploration in Liupanshui coalfield

Funds: 

National Science and Technology Major Project(2016ZX05044-001-005)

More Information
  • Received Date: May 05, 2018
  • Published Date: October 24, 2018
  • Coalbed methane(CBM)development test has gotten significant progress in multiple blocks of Liupanshui coalfield during the last 5 years. There are many CBM accumulation units with different exploration and development conditions in the study area, so the overall evaluation of CBM occurrence characteristics and comprehensive prediction of favorable blocks are crucial for CBM development decisions in the area. The common features of different CBM accumulation units in Upper Permian coal-bearing formation is thin single seam, good cap rock of roof and floor, high gas content, high ground stress, poor coal structure, low porosity and permeability, generally high pressure coefficient, but larger differences in CBM resource abundance and resources, cumulative thickness of coal seam, structure, buried depth, coal rank, production test effect, exploration degree and ground conditions. After that, three second-order indices(resource condition, reservoir condition and developmental foundation condition)and their corresponding nine third-order indices for CBM comprehensive development assessment are established. The comprehensive evaluation and ranking result of 22 CBM accumulation units in the study area is determined by the fuzzy mathematics for favorable block selection. The results show that five CBM accumulation units are favorable blocks for priority development, nine CBM accumulation units are the more favorable areas recommended substituting development, and eight CBM accumulation units are the prospective areas.
  • [1]
    桂宝林. 六盘水地区煤层气地质特征及富集高产控制因素[J]. 石油学报,1999,20(3):31-37.

    GUI Baolin. Geological characteristics and enrichment controlling factors of coalbed methane in Liupanshui region[J]. Acta Petrolei Sinica, 1999, 20(3):31-37.
    [2]
    高为,田维江,秦文,等. 贵州省煤层气与页岩气共探共采的地质优选[J]. 断块油气田,2014,21(1):36-38.

    GAO Wei,TIAN Weijiang,QIN Wen,et al. Geological optimization of coalbed methane and shale gas co-exploration and concurrent production in Guizhou Province[J]. Fault-Block Oil & Gas Field,2014,21(1):36-38.
    [3]
    高为,易同生,金军,等. 黔西地区煤样孔隙综合分形特征及对孔渗性的影响[J]. 煤炭学报,2017,42(5):1258-1265.

    GAO Wei, YI Tongsheng, Jin Jun, et al. Pore integrated fractal characteristics of coal sample in western Guizhou and its impact to porosity and permeability[J]. Journal of China Coal Society, 2017, 42(5):1258-1265.
    [4]
    徐宏杰,桑树勋,杨景芬,等. 贵州省煤层气勘探开发现状与展望[J]. 煤炭科学技术,2016,44(2):1-7.

    XU Hongjie,SANG Shuxun,Yang Jingfen,et al. Status and expectation on coalbed methane exploration and development in Guizhou Province[J]. Coal Science and Technology,2016, 44(2):1-7.
    [5]
    易同生,张井,李新民. 六盘水煤田盘关向斜煤层气开发地质评价[J]. 天然气工业,2007,27(5):29-31.

    YI Tongsheng, ZHANG Jing, LI Xinmin. Development geology assessment on coalbed methane in Panguan Syncline of Liupanshui coal field[J]. Natural Gas Industry, 2007, 27(5):29-31.
    [6]
    周培明,金军,罗开艳,等. 黔西松河井田多层叠置独立含煤层气系统[J]. 煤田地质与勘探,2017,45(5):66-69.

    ZHOU Peiming, JIN Jun, LUO Kaiyan, et al. Unattached multiple layer superimposed coalbed methane system in Songhe mine, west Guizhou[J]. Coal Geology & Exploration, 2017, 45(5):66-69.
    [7]
    高为,易同生. 黔西松河井田煤储层孔隙特征及对渗透性的影响[J]. 煤炭科学技术,2016,44(2):55-61.

    GAO Wei, YI Tongsheng. Pore features of coal reservoir in Songhe mine field of west Guizhou and its impact to permeability[J]. Coal Science and Technology, 2016, 44(2):55-61.
    [8]
    赵黔荣. 贵州六盘水地区煤层气选区及勘探部署[J]. 贵州地质,2003,20(2):92-98.

    ZHAO Qianrong. Selective districts and exploratory distribution for coal-layer gas from Liupanshui area,Guizhou[J]. Guizhou Geology,2003,20(2):92-98.
    [9]
    陈本金,温春齐,曹盛远,等. 贵州六盘水煤层气勘探开发有利目标区优选[J]. 西南石油大学学报(自然科学版),2010, 32(3):56-60.

    CHEN Benjin,WEN Chunqi,CAO Shengyuan,et al. Determination of favorable target areas of coalbed methane exploration and production in Liupanshui, Guizhou[J]. Journal of Southwest Petroleum University(Science & Technology Edition),2010,32(3):56-60.
    [10]
    王安民,曹代勇,魏迎春. 煤层气选区评价方法探讨——以准噶尔盆地南缘为例[J]. 煤炭学报,2017,42(4):950-958.

    WANG Anmin,CAO Daiyong,WEI Yingchun. Discussion on methods for selected areas evaluation of coalbed methane:A case study of southern Junggar basin[J]. Journal of China Coal Society,2017,42(4):950-958.
    [11]
    李贵红. 鄂尔多斯盆地东缘煤层气有利区块优选[J]. 煤田地质与勘探,2015,43(2):28-32.

    LI Guihong. Selection of the favorable coalbed methane (CBM) blocks in eastern Ordos basin[J]. Coal Geology & Exploration, 2015,43(2):28-32.
    [12]
    贾秉义,晋香兰,刘钰辉,等. 乌鲁木齐-大黄山地区八道湾组煤层气有利区块优选[J]. 煤田地质与勘探,2017,45(5):54-57.

    JIA Bingyi,JIN Xianglan,LIU Yuhui,et al. Optimal selection of favorable CBM blocks of Badaowan coal seams in Rumqi-Dahuangshan area[J]. Coal Geology & Exploration, 2017,45(5):54-57.
    [13]
    肖正辉,宁博文,杨荣丰,等. 多层次模糊数学法在湘西北页岩气有利区块优选中的应用[J]. 煤田地质与勘探,2015, 43(3):33-37.

    XIAO Zhenghui,NING Bowen,YANG Rongfeng,et al. Application of multi-layered fuzzy mathematics in selecting the favorable areas of shale gas in northwestern Hunan[J]. Coal Geology & Exploration,2015,43(3):33-37.
    [14]
    吕玉民,梁建设,柳迎红,等. 基于测井信息的煤层气有利区多层次模糊综合评价模型-以寿阳区块为例[J]. 煤田地质与勘探,2016,44(1):56-61.

    LYU Yumin,LIANG Jianshe,LIU Yinghong,et al. Multi-level fuzzy comprehensive evaluation model for favorable coalbed methane development area based on logging information:A case of Shouyang block[J]. Coal Geology & Exploration,2016, 44(1):56-61.
    [15]
    杨瑞琴,唐显贵. 贵州省六盘水煤田含煤地层特征分析[J]. 中国煤炭地质,2014,26(7):28-32.

    YANG Ruiqin,TANG Xiangui. Coal-bearing strata characteristic analysis in Liupanshui coalfield,Guizhou Province[J]. Coal Geology of China,2014,26(7):28-32.
    [16]
    杨兆彪,秦勇,高弟,等. 煤层群条件下的煤层气成藏特征[J]. 煤田地质与勘探,2011,39(5):22-26.

    YANG Zhaobiao,QIN Yong,GAO Di,et al. Coalbed methane(CBM) reservoir-forming character under conditions of coal seam groups[J]. Coal Geology & Exploration,2011,39(5):22-26.
    [17]
    窦新钊,姜波,秦勇,等. 黔西地区构造演化及其对晚二叠世煤层的控制[J]. 煤炭科学技术,2012,40(3):109-114.

    DOU Xinzhao,JIANG Bo,QIN Yong,et al. Structure evolution in west of Guizhou area and control to seam in Late Permian[J]. Coal Science and Technology,2012,40(3):109-114.
    [18]
    易同生,高为. 六盘水煤田上二叠统煤系气成藏特征及共探共采方向[J]. 煤炭学报,2018,43(6):1553-1564.

    YI Tongsheng,GAO Wei. Reservoir formation characteristics as well as co-exploration and co-mining orientation of Upper Permian coal-bearing gas in Liupanshui coalfield[J]. Journal of China Coal Society,2018,43(6):1553-1564.
    [19]
    郭晨,卢玲玲. 黔西煤层气成藏特性空间分异及其对开发的启示[J]. 煤炭学报,2016,41(8):2006-2016.

    GUO Chen,LU Lingling. Spatial distribution and variation of coalbed methane reservoir characteristics and its significance for CBM development in western Guizhou[J]. Journal of China Coal Society,2016,41(8):2006-2016.
    [20]
    申建,秦勇,陈刚. 煤层气成藏效应量化表征及类型判识[J]. 中国矿业大学学报,2014,43(5):831-836.

    SHEN Jian,QIN Yong,CHEN Gang. Quantitative models of coalbed methane accumulation effect and type recognition[J]. Journal of China University of Mining & Technology,2014, 43(5):831-836.
    [21]
    易同生,周效志,金军. 黔西松河井田龙潭煤系煤层气-致密气成藏特征及共探共采技术[J]. 煤炭学报,2016,41(1):212-220.

    YI Tongsheng,ZHOU Xiaozhi,JIN Jun. Reservoir forming characteristics and co-exploration and concurrent production technology of Longtan coal measure coalbed methane & tight gas in Songhe field,western Guizhou[J]. Journal of China Coal Society,2016,41(1):212-220.
    [22]
    高为,金军,易同生,等. 黔北小林华矿区高阶煤层气藏特征及开采技术[J]. 岩性油气藏,2017,29(5):140-147.

    GAO Wei,JIN Jun,YI Tongsheng,et al. Enrichment mechanism and mining technology of high rank coalbed methane in Xiaolinhua coal mine,northern Guizhou[J]. Lithologic Reservoirs,2017,29(5):140-147.
    [23]
    秦勇,高弟. 贵州省煤层气资源潜力预测与评价[M]. 徐州:中国矿业大学出版社,2012.
    [24]
    邵龙义,文怀军,李永红,等. 青海省天峻县木里煤田煤层气有利区块的多层次模糊数学评判[J]. 地质通报,2011,30(12):1896-1903.

    SHAO Longyi,WEN Huaijun,LI Yonghong,et al. Assessment of favorable areas for coalbed methane resources exploration in the Muli coalfield of Qinghai Province based on multi-layered fuzzy mathematics[J]. Geological Bulletin of China,2011, 30(12):1896-1903.
    [25]
    高为,易同生,金军,等. 贵州松河井田煤层气地面抽采潜力分析[J]. 煤矿安全,2016,47(8):190-193.

    GAO Wei,YI Tongsheng,JIN Jun,et al. Potential analysis of coalbed methane drainage in Guizhou Songhe coal mine[J]. Safety in Coal Mines,2016,47(8):190-193.
    [26]
    韩俊,邵龙义,肖建新,等. 多层次模糊数学在煤层气开发潜力评价中的应用[J]. 煤田地质与勘探,2008,36(3):31-36.

    HAN Jun,SHAO Longyi,XIAO Jianxin,et al. Application of multi-layered fuzzy mathematics in assessment of exploitation potential of coalbed methane resources[J]. Coal Geology & Exploration,2008,36(3):31-36.
    [27]
    SAATY T L. The analytical hierarchy process:Planning,priority setting,resource allocation[M]. Mc Graw-Hiu International book, 1980:287.
    [28]
    张宝生,彭贤强,罗东坤. 中国煤层气目标区综合评价与优选研究[J]. 资源科学,2009,31(4):681-686.

    ZHANG Baosheng,PENG Xianqiang,LUO Dongkun. Research on comprehensive evaluation and ranking of China's coalbed methane perspectives[J]. Resources Science,2009,31(4):681-686.
  • Related Articles

    [1]XU Dongjing, ZHANG Ruiqing, GAO Weifu, JIANG Haonan, ZHU Haifeng, LI Ye, XIA Zhicun. Zonal prediction of the heights of water-conducting fracture zones under varying overburden types in North China-type coalfields[J]. COAL GEOLOGY & EXPLORATION, 2025, 53(3): 177-189. DOI: 10.12363/issn.1001-1986.24.10.0625
    [2]CHEN Luwang, HU Yongsheng, ZHANG Jie, ZHANG Miao, ZHENG Jian, ZHENG Xin, ZHANG Yuanyuan, CAI Xinyue, WU Minghui. Progress of research on key technologies for hydrogeochemical prospecting in North China type coalfield[J]. COAL GEOLOGY & EXPLORATION, 2023, 51(2): 207-219. DOI: 10.12363/issn.1001-1986.23.01.0025
    [3]DING Tongfu, WANG Minhua, ZHAO Junfeng. Genesis analysis and study on tectonic control on water of Huainan North China-type coal field[J]. COAL GEOLOGY & EXPLORATION, 2020, 48(4): 102-108. DOI: 10.3969/j.issn.1001-1986.2020.04.015
    [4]WANG Zitao, LIU Qimeng, LIU Yu. Spatial distribution and formation of groundwater hydrochemistry in Huainan coalfield[J]. COAL GEOLOGY & EXPLORATION, 2019, 47(5): 40-47. DOI: 10.3969/j.issn.1001-1986.2019.05.006
    [5]HU Baolin, GAO Deyi, LIU Huihu, XU Hongjie, ZHANG Ping, SUN Fei. Relationship between sedimentary facies and source rocks of Permian strata in Huainan coalfield[J]. COAL GEOLOGY & EXPLORATION, 2017, 45(6): 1-6,13. DOI: 10.3969/j.issn.1001-1986.2017.06.001
    [6]WU Dun, ZHANG Wenyong, ZHU Wenwei, ZHOU Xuenian, DING Hai, ZHAO Zhiyi. The exploration and development of unconventional oil and gas in the Taiyuan Formation from Huainan coalfield[J]. COAL GEOLOGY & EXPLORATION, 2017, 45(4): 13-18. DOI: 10.3969/j.issn.1001-1986.2017.04.003
    [7]GAO Deyi, PING Wenwen, HU Baolin, LIU Huihu, XU Hongjie, CHENG Qiao, ZHANG Ping. Geochemistry characteristics of trace elements of mud shale of Shanxi Formation in Huainan coalfield and its significance[J]. COAL GEOLOGY & EXPLORATION, 2017, 45(2): 14-21. DOI: 10.3969/j.issn.1001-1986.2017.02.003
    [8]LI Yong-jun, PENG Su-ping. Classifications and characteristics of karst collapse columns in North China coalfields[J]. COAL GEOLOGY & EXPLORATION, 2006, 34(4): 53-57.
    [9]SONG Chuan-zhong, ZHU Guang, LIU Guo-sheng, NIU Man-lan. Identificating of structure and its dynamics control of Huainan coalfield[J]. COAL GEOLOGY & EXPLORATION, 2005, 33(1): 11-15.
    [10]ZHANG Hong, ZHENG Yu-zhu, ZHENG Gao-sheng, WANG Sheng-zu. Extensional structure under the Fufeng-nappe in Huainan Coalfield, Anhui Province, and its formative mechanism[J]. COAL GEOLOGY & EXPLORATION, 2003, 31(3): 1-4.
  • Cited by

    Periodical cited type(25)

    1. 郑剑,陈陆望,张杰,张苗,郑忻,胡永胜. 贝叶斯突水水源判别与反向水文地球化学模拟的含水层水力分析. 合肥工业大学学报(自然科学版). 2025(02): 203-211 .
    2. 蒋欣静,李仲夏,万军伟,成建梅,王志明,王玲,王铭. 柳家村隧洞水化学特征分析及涌水水源判别方法研究. 安全与环境工程. 2024(04): 158-169 .
    3. 张强,胡志伟,王毛毛,周成号. 基于主成分自组织神经网络法的测井曲线分层技术. 地质与勘探. 2024(05): 1013-1020 .
    4. 施龙青,曲兴玥,韩进. 黄土梁峁地貌矿井水水质时空变异评估与关键控制因子水源识别. 煤田地质与勘探. 2023(02): 195-206 . 本站查看
    5. 陈陆望,胡永胜,张杰,张苗,郑剑,郑忻,张媛媛,蔡欣悦,武明辉. 华北型煤田水文地球化学勘探关键技术研究进展. 煤田地质与勘探. 2023(02): 207-219 . 本站查看
    6. 赵世毫,高林,陈原望,蒋明,向天麟,申业兴,许帅. 基于水化学特征分析的近地表井壁涌水来源识别技术. 矿业研究与开发. 2023(11): 150-156 .
    7. 张苗,陈陆望,姚多喜,张杰. 宿县矿区石炭系太灰地下水化学特征及水岩相互作用. 合肥工业大学学报(自然科学版). 2022(03): 396-405 .
    8. 苏玮,姜春露,查君珍,郑刘根,谢华东,黄文迪,陈园平. 基于客观组合权-改进集对分析模型的矿井突水水源识别. 煤炭科学技术. 2022(04): 156-164 .
    9. 张胜军,丁亚恒,姜春露,李明,郑刘根. 基于水化学和氯同位素的煤矿矿井水来源识别与解析. 煤炭工程. 2022(06): 123-127 .
    10. 毛志勇,崔鹏杰,黄春娟,韩榕月. KPCA-CS-SVM下的矿井突水水源判别模型. 辽宁工程技术大学学报(自然科学版). 2021(02): 104-111 .
    11. 满孝全,魏久传,谢道雷,谢春雷. 基于水化学特征分析的突水水源判别方法. 中国科技论文. 2021(01): 76-81+90 .
    12. 朱敬忠,李凌,杨森. 基于因子分析的突水水源类型判别的研究. 矿业安全与环保. 2021(02): 87-91+96 .
    13. 施亚丽,吴基文,翟晓荣,王广涛,洪荒,毕尧山. 采动影响下皖北恒源煤矿八含水化学特征研究. 安徽理工大学学报(自然科学版). 2021(01): 31-40 .
    14. 苏俏俏,黄平华,丁风帆,胡永胜,郜鸿飞. 基于Piper-PCA-Fisher模型的矿井突水水源识别. 能源与环保. 2021(10): 122-127 .
    15. 李凌,胡友彪,刘瑜,琚棋定. 基于多元统计与Bayes判别模型的水源判别. 安徽理工大学学报(自然科学版). 2021(06): 25-31 .
    16. 刘小贺. 主成分-距离水质识别水源模型主成分的选取. 地下水. 2020(02): 23-26 .
    17. 姜子豪,胡友彪,琚棋定,周露,张淑莹. 矿井突水水源判别方法. 工矿自动化. 2020(04): 28-33 .
    18. 马济国,姜春露,朱赛君,谢毫,毕波,郑刘根. 基于主成分分析的潘谢矿区突水水源Fisher判别模型. 煤炭技术. 2020(09): 132-134 .
    19. 张靖苑. 基于主成分分析和随机配置网络的矿井突水水源判别方法研究. 煤炭工程. 2020(S2): 101-104 .
    20. 题正义,张峰,秦洪岩,朱志洁. 基于板壳和断裂力学理论的上覆采空区积水危险性判定技术. 煤田地质与勘探. 2019(01): 138-143 . 本站查看
    21. 刘国伟,马凤山,郭捷,杜云龙,侯成录,李威. 多元统计分析在滨海矿区水源识别中的应用——以三山岛金矿为例. 黄金科学技术. 2019(02): 207-215 .
    22. 董东林,李祥,林刚,卞建玲,曹成龙,吴恒. 突水水源的独立性权–模糊可变理论识别模型. 煤田地质与勘探. 2019(05): 48-53 . 本站查看
    23. 张宇,彭琪,曾开帅,唐金平,何文君,张强. Bayes判别理论在陇西黄土高原地区地下水化学分类中的应用. 甘肃水利水电技术. 2019(10): 1-5 .
    24. 邓松松. 超化煤矿突水灾害地质条件分析及防治措施. 能源与节能. 2018(06): 38-39 .
    25. 琚棋定,胡友彪,张淑莹. 基于主成分分析与贝叶斯判别法的矿井突水水源识别方法研究. 煤炭工程. 2018(12): 90-94 .

    Other cited types(16)

Catalog

    Article Metrics

    Article views (147) PDF downloads (37) Cited by(41)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return