SU Chao, GUO Heng, HOU Yanwei, MA Bingzhen. CSAMT static correction and its application in detection of coal mine goaf[J]. COAL GEOLOGY & EXPLORATION, 2018, 46(4): 168-173. DOI: 10.3969/j.issn.1001-1986.2018.04.027
Citation: SU Chao, GUO Heng, HOU Yanwei, MA Bingzhen. CSAMT static correction and its application in detection of coal mine goaf[J]. COAL GEOLOGY & EXPLORATION, 2018, 46(4): 168-173. DOI: 10.3969/j.issn.1001-1986.2018.04.027

CSAMT static correction and its application in detection of coal mine goaf

Funds: 

National Key R&D Program of China(2017YFC0804105)

More Information
  • Received Date: December 14, 2017
  • Published Date: August 24, 2018
  • Controlled source audio magnetotelluric(CSAMT) is an effective method for detecting coal mine goaf. As static effects of CSAMT is susceptible to produce due to the influence of shallow inhomogeneity, CSAMT data can be corrected by using the curve-shift method based on the late apparent resistivity data of TEM. It can eliminate the static effect and ensure true resistivity response, and improve the accuracy of data interpretation. Taking the forward model as an example, the effectiveness of this method was verified. This method was applied to detect the goaf in a coal mine in Shanxi. Results of inversion by corrected data coincided well the known data. The theory and practice prove that the correction method is feasible and has good detection effect.
  • [1]
    李文. 煤矿采空区地面综合物探方法优化研究[J]. 煤炭科学技术,2017,45(1):194-199.

    LI Wen. Optimization study of surface comprehensive geophysical detection methods of coal mine goafs[J]. Coal Science and Technology,2017,45(1):194-199.
    [2]
    张永超,程辉,张克聪,等. CSAMT探测大采深急倾斜煤层采空区研究[J]. 地球物理学进展,2016,31(2):877-881.

    ZHANG Yongchao,CHENG Hui,ZHANG Kecong,et al. Detecting goaf of large mining depth in steep coal seams by CSAMT[J]. Progress in Geophysics,2016,31(2):877-881.
    [3]
    程云涛. CSAMT静态效应的识别及校正[D]. 长沙:中南大学, 2008.
    [4]
    黄兆辉,底青云,侯胜利. CSAMT的静态效应校正及应用[J]. 地球物理学进展,2006,21(4):1290-1295.

    HUANG Zhaohui,DI Qingyun,HOU Shengli. CSAMT static correction and its application[J]. Progress in Geophysics,2006, 21(4):1290-1295.
    [5]
    于生宝,郑建波,高明亮,等. 基于小波变换模极大值法和阈值法的CSAMT静态校正[J]. 地球物理学报,2017,60(1):360-368.

    YU Shengbao,ZHENG Jianbo,GAO Mingliang,et al. CSAMT static correction method based on wavelet transform modulus maxima and thresholds[J]. Chinese Journal of Geophysics,2017, 60(1):360-368.
    [6]
    胡瑞华,林君,孙彩堂,等. 均匀大地CSAMT静态效应模拟及其特征研究[J]. 物探与化探,2015,39(6):1150-1155.

    HU Ruihua,LIN Jun,SUN Caitang,et al. Simulation of CSAMT static effect and research on its characteristics in homogeneous earth[J]. Geophysical and Geochemical Exploration,2015, 39(6):1150-1155.
    [7]
    陈辉,王春庆,雷达,等. CSAMT法静态效应模拟及其校正方法对比[J]. 物探化探计算技术,2007(增刊1):64-67.

    CHEN Hui,WANG Chunqing,LEI Da,et al. An application of CSAMT sounding to exploration of deep geothermal resources[J]. Computing Techniques for Geophysical and Geochemical Exploration,2007(S1):64-67.
    [8]
    伍亮,李桐林,朱成,等. 大地电磁测深法中静态效应及其反演[J]. 地球物理学进展,2015,30(2):840-846.

    WU Liang,LI Tonglin,ZHU Cheng,et al. Research and inversion static effect in magnetotelluric[J]. Progress in Geophysics,2015,30(2):840-846.
    [9]
    YIN C,ZHANG B,LIU Y,et al. 3D CSAMT modeling with topography[C]//Eage Conference and Exhibition,2016.
    [10]
    程建远,江浩,姬广忠,等. 基于节点式地震仪的煤矿井下槽波地震勘探技术[J]. 煤炭科学技术,2015,43(2):25-28.

    CHENG Jianyuan,JIANG Hao,JI Guangzhong,et al. Guided wave seismic exploration technology based on node digital seismograph in underground mine[J]. Coal Science and Technology, 2015,43(2):25-28.
    [11]
    覃思,程建远,胡继武,等. 煤矿采空区及巷道的井地联合地震超前勘探[J]. 煤炭学报,2015,40(3):636-639.

    QIN Si, CHENG Jianyuan, HU Jiwu, et al. Coal-seamground-seismic for advance detection of goaf and roadway[J]. Journal of China Coal Society,2015,40(3):636-639.
    [12]
    张川,杨春,王赟. 关于薄层与单界面模型弹性反射透射系数的讨论[J]. 煤田地质与勘探,2015,43(2):86-90.

    ZHANG Chuan,YANG Chun,WANG Yun. Discussion on elastic reflection and transmission coefficients of thin-bed and single interface models[J]. Coal Geology & Exploration,2015, 43(2):86-90.
    [13]
    李洪嘉. 综合物探技术在煤矿采空区探测中的应用研究[D]. 长春:吉林大学,2014.
    [14]
    付天光. 综合物探方法探测煤矿采空区及积水区技术研究[J]. 煤炭科学技术,2014,42(8):90-94.

    FU Tianguang. Study on technology of comprehensive geophysical method exploration of mine goaf and water accumulated area[J]. Coal Science and Technology,2014,42(8):90-94.
    [15]
    李貅,刘文韬,智庆全,等. 核磁共振与瞬变电磁三维联合解释方法[J]. 地球物理学报,2015,58(8):2730-2744.

    LI Xiu,LIU Wentao,ZHI Qingquan,et al. Three-dimensional joint interpretation of nuclear magnetic resonance and transient electromagnetic data[J]. Chinese Journal of Geophysics,2015, 58(8):2730-2744.
    [16]
    范涛,王秀臣,李貅,等. 瞬变电磁方法在探测煤矿浅层高阻采空区中的应用[J]. 西北地质,2010,43(2):156-162.

    FAN Tao,WANG Xiuchen,LI Xiu,et al. Application of TEM in detecting goaf of coal mine with high-resistivity and shallow-layer[J]. Northwestern Geology,2010,43(2):156-162.
    [17]
    罗延钟,何展翔,马瑞伍,等. 可控源音频大地电磁法的静态效应校正[J]. 物探与化探,1991,15(3):196-202.

    LUO Yanzhong,HE Zhanxiang,MA Ruiwu,et al. The correction of static effects in sonic frequency telluric electromagnetic method of controllable source[J]. Geophysical Exploration and Geochemical Exploration,1991,15(3):196-202.
    [18]
    张克聪,张永超,李宏杰,等. 高分辨率CSAMT探测浅埋煤层采空区应用研究[J]. 中国煤炭,2016,42(7):24-28.

    ZHANG Kecong,ZHANG Yongchao,LI Hongjie,et al. Research on application of CSAMT with high resolution for detecting goaf in shallow coal seam[J]. China Coal,2016,42(7):24-28.
    [19]
    姜国庆,贾春梅,谭强,等. 频率域电磁法在煤矿采空区调查中的应用[J]. 物探与化探,2015,39(3):646-650.

    JIANG Guoqing,JIA Chunmei,TAN Qiang,et al. Application of fdem in detecting coal mined-out areas[J]. Geophysical and Geochemical Exploration,2015,39(3):646-650.
    [20]
    解海军,陈明生,阎述. 利用小波分析压制静态效应[J]. 煤田地质与勘探,1998,26(4):61-65.

    XIE Haijun,CHEN Mingsheng,YAN Shu. Suppression of static effects using wavelet analysis[J]. Coal Geology & Exploration, 1998,26(4):61-65.
    [21]
    宋守根,汤井田,何继善. 小波分析与电磁测深中静态效应的识别、分离及压制[J]. 地球物理学报,1995,38(1):120-128.

    SONG Shougen,TANG Jingtian,HE Jishan. Wavelets analysis and the recognition separation and removal of the static shift in electromagnetic soundings[J]. Chinese Journal of Geophysics, 1995,38(1):120-128.
  • Related Articles

    [1]ZHOU Ze, YI Tongsheng, QIN Yong, ZHOU Yongfeng, WANG Lingxia, KONG Weimin. Exploring geological parameters sensitive to underground coal gasification[J]. COAL GEOLOGY & EXPLORATION, 2024, 52(3): 24-36. DOI: 10.12363/issn.1001-1986.23.08.0473
    [2]ZHOU Ze, WANG Lingxia, QIN Yong, JIN Jun, YANG Lei, YI Tongsheng. UCG engineering demonstrations in Australia: History and its implications[J]. COAL GEOLOGY & EXPLORATION, 2023, 51(7): 52-60. DOI: 10.12363/issn.1001-1986.22.12.0971
    [3]WANG Zhiwei, ZHANG Kai, WU Qunhu, ZHANG Benhua, YU Shina, ZHANG Zunxiang, WU Yanjia. A method for predicting fractures in carbonate reservoirs based on fracture identification-sensitive log-seismic parameter model[J]. COAL GEOLOGY & EXPLORATION, 2023, 51(6): 163-174. DOI: 10.12363/issn.1001-1986.22.10.0819
    [4]QIN Yigen, YANG Genlan, XIE Jin, LIU Bangyu. Sensitivity analysis of disaster-pregnant environmental factors for slope geological hazards in Kaiyang County, Guizhou Province[J]. COAL GEOLOGY & EXPLORATION, 2020, 48(4): 190-198. DOI: 10.3969/j.issn.1001-1986.2020.04.026
    [5]GU Feng, LI Lezhong, YU Yixin, SU Zhan, GE Yan, HAO Yan, LIU Xiaojian. Controlling factors of coalbed methane and accumulation areas in Galilee basin in Australia[J]. COAL GEOLOGY & EXPLORATION, 2017, 45(2): 55-61. DOI: 10.3969/j.issn.1001-1986.2017.02.010
    [6]WU Jing. Influence of reservoir factors on low-rank coalbed methane well production and sensitivity analysis[J]. COAL GEOLOGY & EXPLORATION, 2015, 43(5): 44-48. DOI: 10.3969/j.issn.1001-1986.2015.05.011
    [7]MA Xingzhi, SONG Yan, LIU Shaobo, TIAN Hua, ZHENG Yongping, HAO Jiaqing. Analysis on parameter sensibility during isothermal adsorption experiment of coal reservoir[J]. COAL GEOLOGY & EXPLORATION, 2014, 42(6): 34-39. DOI: 10.3969/j.issn.1001-1986.2014.06.007
    [8]ZHANG Xudong, WEN Guojun. Variable design of drilling rig's parts based on pro-development of SolidWorks[J]. COAL GEOLOGY & EXPLORATION, 2012, 40(6): 89-92. DOI: 10.3969/j.issn.1001-1986.2012.06.021
    [9]LI Rong-wei, HOU En-ke. Orthogonality analysis of sensibility on factors of slope stability in opencast coal mine[J]. COAL GEOLOGY & EXPLORATION, 2009, 37(1): 52-56.
    [10]Peng Gelin, Zhao Zhizhong. KEY FACTORS ON EXPLORATION AND DEVELOPMENT FOR COALBED METHANE IN AUSTRALIA: RESEARCH OF IN-SITU STRESS[J]. COAL GEOLOGY & EXPLORATION, 1998, 26(3): 31-34,53.
  • Cited by

    Periodical cited type(7)

    1. 吴国庆. 反射槽波探测法在煤层褶曲与断层识别中的研究与应用. 煤田地质与勘探. 2024(09): 154-165 . 本站查看
    2. 常锁亮,刘晶,张生,石晓红,刘最亮,杨智华. 构造煤分布的地质控制及其地震地质一体化预测方法——以沁水盆地阳泉新景矿3号煤层研究为例. 石油物探. 2023(01): 43-55 .
    3. 吴国庆,马彦龙. 地质透明化工作面内多种异常体的槽波解释方法研究. 煤炭科学技术. 2023(05): 149-160 .
    4. 范徳元,吴国庆,马彦龙. 槽波技术在阳泉矿区地质异常体探测中的应用研究. 煤田地质与勘探. 2021(04): 33-39 . 本站查看
    5. 张建国,韩晟,张聪,陈彦君. 基于聚煤环境分区的煤体结构测井判别及应用——以沁水盆地南部马必东地区为例. 煤田地质与勘探. 2021(04): 114-122 . 本站查看
    6. 张刚,常锁亮,王瑞瑞,刘波,曾博,刘最亮,杨智华. 基于地震沉积学的沉积相精细刻画:以山西寺家庄矿15号煤层聚煤前后为例. 中国煤炭地质. 2021(10): 125-133+154 .
    7. 汪北方,梁冰,张晶,迟海波,黄普江. 红山煤矿石门揭突出煤层综合防突技术. 煤田地质与勘探. 2019(05): 86-93 . 本站查看

    Other cited types(2)

Catalog

    Article Metrics

    Article views (134) PDF downloads (14) Cited by(9)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return