Citation: | WANG Zhiwei,ZHANG Kai,WU Qunhu,et al. A method for predicting fractures in carbonate reservoirs based on fracture identification-sensitive log-seismic parameter model[J]. Coal Geology & Exploration,2023,51(6):163−174. DOI: 10.12363/issn.1001-1986.22.10.0819 |
Carbonate reservoirs show fractures and strong heterogeneity, leading to limited applications of a single logging or seismic method in fracture identification. Therefore, this study proposed a method for predicting fractures in carbonate reservoirs based on a fracture identification-sensitive log-seismic parameter (FISLSP) model, and the details are as follows: (1) Based on petrophysical analysis results, as well as formation micro-imaging (FMI) logs and the interpretations of fractures at well locations, this study established a segmental fracture identification-sensitive parameter (FISP) model for fractures at well locations; (2) Using the optimal seismic attributes of near-well seismic traces determined based on the high-quality fractured reservoirs classified according to geological and log interpretation results, this study constructed a FISP model based on the seismic attributes of near-well seismic traces (FISPSA); (3) Using logs combined with seismic attributes, this study established the technology roadmap, method, and procedure for reservoir fracture prediction based on a FISLSP model, achieved the 3D seismic prediction of fractures, and developed a FISLSP model-based 3D seismic fracture prediction method, which applies to buried-hill carbonate oil reservoirs. This method was applied to the prediction of fractures in the Chengdao buried-hill reservoirs of the Shengli Oilfield in the Bohai Bay Basin. The predicted results were consistent with fractures revealed through drilling, indicating that the new method is feasible. The results of this study warrant wide application to the fracture detection of similar buried-hill reservoirs.
[1] |
马永生. 中国海相碳酸盐岩油气资源、勘探重大科技问题及对策[J]. 世界石油工业,2000,7(3):13−14.
MA Yongsheng. Important science−technology problem and strategy of oil–gas resources and its exploration of marine carbonate rocks in China[J]. World Petroleum Industry,2000,7(3):13−14.
|
[2] |
赵文智,胡素云,刘伟,等. 再论中国陆上深层海相碳酸盐岩油气地质特征与勘探前景[J]. 天然气工业,2014,34(4):1−9.
ZHAO Wenzhi,HU Suyun,LIU Wei,et al. Petroleum geological features and exploration prospect in deep marine carbonate strata onshore China:A further discussion[J]. Natural Gas Industry,2014,34(4):1−9.
|
[3] |
何治亮,金晓辉,沃玉进,等. 中国海相超深层碳酸盐岩油气成藏特点及勘探领域[J]. 中国石油勘探,2016,21(1):3−14.
HE Zhiliang,JIN Xiaohui,WO Yujin,et al. Hydrocarbon accumulation characteristics and exploration domains of ultra–deep marine carbonates in China[J]. China Petroleum Exploration,2016,21(1):3−14.
|
[4] |
张光辉. 油气储层测井裂缝识别方法研究及软件研制[D]. 成都: 成都理工大学, 2011.
ZHANG Guanghui. Method research and software development of identification of fracture in oil or gas reservoir based on well logging[D]. Chengdu: Chengdu University of Technology, 2011.
|
[5] |
党青宁,崔永福,陈猛,等. OVT域叠前裂缝预测技术:以塔里木盆地塔中ZG地区奥陶系碳酸盐岩为例[J]. 物探与化探,2016,40(2):398−404.
DANG Qingning,CUI Yongfu,CHEN Meng,et al. Fracture detection with prestack seismic data in OVT domain:A case study of the Ordovician carbonate reservoir in ZG area of Tazhong district in Tarim Basin[J]. Geophysical and Geochemical Exploration,2016,40(2):398−404.
|
[6] |
吴姗姗,高刚,桂志先,等. 基于Ruger近似式预测裂缝型储层的可行性研究[J]. 煤田地质与勘探,2020,48(1):189−196.
WU Shanshan,GAO Gang,GUI Zhixian,et al. Ruger approximate formula–based prediction of fractured reservoir[J]. Coal Geology & Exploration,2020,48(1):189−196.
|
[7] |
董少群,曾联波,杜相仪,等. 致密碳酸盐岩储集层裂缝智能预测方法[J]. 石油勘探与开发,2022,49(6):1179−1189.
DONG Shaoqun,ZENG Lianbo,DU Xiangyi,et al. An intelligent prediction method of fractures in tight carbonate reservoirs[J]. Petroleum Exploration and Development,2022,49(6):1179−1189.
|
[8] |
周晨. 碳酸盐岩裂缝储层叠后地震属性综合预测[D]. 成都: 成都理工大学, 2020.
ZHOU Chen. Comprehensive prediction of carbonate fractured reservoirs by post–stack seismic attributes[D]. Chengdu: Chengdu University of Technology, 2020.
|
[9] |
TOKHMECHI B,MEMARIAN H,NOUBARI H A,et al. A novel approach proposed for fractured zone detection using petrophysical logs[J]. Journal of Geophysics and Engineering,2009,6(4):365−373. DOI: 10.1088/1742-2132/6/4/004
|
[10] |
TOKHMCHI B, MEMARIAN H, REZAEE M R. Estimation of the fracture density in fractured zones using petrophysical logs[J]. Journal of Petroleum Science and Engineering, 2010, 72(1/2): 206–213.
|
[11] |
SABOORIAN–JOOYBARI H, DEJAM M, CHEN Z, et al. Fracture identification and comprehensive evaluation of the parameters by dual laterolog data[C]//SPE Middle East Unconventional Resources Conference and Exhibition, January 26-28. Muscat, 2015.
|
[12] |
黄振华,程礼军,刘俊峰,等. 微电阻率成像测井在识别页岩岩相与裂缝中的应用[J]. 煤田地质与勘探,2015,43(6):121−123.
HUANG Zhenhua,CHENG Lijun,LIU Junfeng,et al. Application of micro–resistivity image logging in identifying shale facies and fractures[J]. Coal Geology & Exploration,2015,43(6):121−123.
|
[13] |
AGHLI G,SOLEIMANI B,MOUSSAVI–HARAMI R,et al. Fractured zones detection using conventional petrophysical logs by differentiation method and its correlation with image logs[J]. Journal of Petroleum Science and Engineering,2016,142:152−162. DOI: 10.1016/j.petrol.2016.02.002
|
[14] |
卢颖忠,黄智辉,管志宁. 用常规测井资料识别裂缝发育程度的方法[J]. 测井技术,2000,24(6):428−432.
LU Yingzhong,HUANG Zhihui,GUAN Zhining,et al. A new method for discrimination of the degree of fracture development using conventional log data[J]. Well Logging Technology,2000,24(6):428−432.
|
[15] |
AGUILERA R. Analysis of naturally fractured reservoirs from conventional well logs[J]. Journal of Petroleum Technology,1976,28(7):764−772. DOI: 10.2118/5342-PA
|
[16] |
YASIN Q,DU Qizhen,SOHAIL G M,et al. Fracturing index–based brittleness prediction from geophysical logging data:Application to Longmaxi shale[J]. Geomechanics and Geophysics for Geo–Energy and Geo–Resources,2018,4(4):301−325. DOI: 10.1007/s40948-018-0088-4
|
[17] |
YASIN Q,DU Qizhen,ISMAIL A,et al. A new integrated workflow for improving permeability estimation in a highly heterogeneous reservoir of Sawan gas field from well logs data[J]. Geomechanics and Geophysics for Geo–Energy and Geo–Resources,2019,5(2):121−142. DOI: 10.1007/s40948-018-0101-y
|
[18] |
DU Qizhen,YASIN Q,ISMAIL A,et al. Combining classification and regression for improving shear wave velocity estimation from well logs data[J]. Journal of Petroleum Science and Engineering,2019,182:106260. DOI: 10.1016/j.petrol.2019.106260
|
[19] |
印兴耀,周静毅. 地震属性优化方法综述[J]. 石油地球物理勘探,2005,40(4):482−489.
YIN Xingyao,ZHOU Jingyi. Summary of optimum methods of seismic attributes[J]. Oil Geophysical Prospecting,2005,40(4):482−489.
|
[20] |
王飞,程礼军,刘俊峰,等. 叠后地震属性识别页岩气储层裂缝研究及应用[J]. 煤田地质与勘探,2015,43(5):113−116.
WANG Fei,CHENG Lijun,LIU Junfeng,et al. Research and application of post–stack seismic attributes in recognizing shale gas reservoir fracture[J]. Coal Geology & Exploration,2015,43(5):113−116.
|
[21] |
李弘,窦之林,王世星,等. 碳酸盐岩缝洞型储层“弱反射”特征的地震多属性识别[J]. 石油物探,2014,53(6):713−719. DOI: 10.3969/j.issn.1000-1441.2014.06.012
LI Hong,DOU Zhilin,WANG Shixing,et al. Seismic multi–attributes recognition for carbonate fractured−vuggy reservoirs with“weak reflection”characteristics[J]. Geophysical Prospecting for Petroleum,2014,53(6):713−719. DOI: 10.3969/j.issn.1000-1441.2014.06.012
|
[22] |
王端平,张敬轩. 胜利油区埕北30潜山储集性裂缝预测方法[J]. 石油实验地质,2000,22(3):250−255.
WANG Duanping,ZHANG Jingxuan. Prediction method of reservoir fractures in the Chengbei 30 buried–hill of Shengli Oilfield[J]. Experimental Petroleum Geology,2000,22(3):250−255.
|
[23] |
高喜龙. 埕岛油田埕北30潜山储层评价与成藏模式研究[D]. 广州: 中国科学院研究生院(广州地球化学研究所), 2003.
GAO Xilong. Reservoir evaluation and petroleum pool formation model of CB30 hidden hill in Chengdao Oilfield[D]. Guangzhou: Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 2003.
|
[24] |
张强. 裂缝性碳酸盐岩储层网络发育模式及地震表征技术研究[D]. 青岛: 中国石油大学(华东), 2020.
ZHANG Qiang. Study on network development model and seismic characterization technology of fractured carbonate reservoir[D]. Qingdao: China University of Petroleum (East China), 2020.
|
1. |
汪伟民,郝红俊,翟晓荣,程龙艺,汪蒙,庞瑶. 基于改进AHP-独立性权系数法的地质构造复杂程度定量评价. 煤炭技术. 2024(04): 119-124 .
![]() | |
2. |
高阳. 熵权耦合聚类法在奥灰岩溶水系统径流带划分中的应用. 华北自然资源. 2023(04): 61-63 .
![]() | |
3. |
李军,张波. 基于IFAHP-改进熵权法的煤矿综合防尘体系安全评价. 煤炭技术. 2023(09): 195-199 .
![]() | |
4. |
安律宁,陈继福,董广铭,李玉兵. 基于层次聚类模糊综合评判的矿井突水危险性评价. 煤炭与化工. 2023(10): 49-56 .
![]() | |
5. |
万松,范祝连,邓双,卞阿娜. 基于GIS的山地生态县域生态敏感性研究——以闽侯县为例. 南方林业科学. 2022(02): 58-63 .
![]() | |
6. |
姚辉,尹尚先,徐维,张润畦,蒋知廷. 基于组合赋权的加权秩和比法的底板突水危险性评价. 煤田地质与勘探. 2022(06): 132-137 .
![]() | |
7. |
郑剑英. 基于综合赋权的煤层底板突水危险性评价. 工矿自动化. 2022(08): 140-146 .
![]() | |
8. |
黄家远. 基于IFAHP-熵权法的煤矿瓦斯防治系统安全评价. 中国矿山工程. 2022(04): 9-15 .
![]() | |
9. |
左林霄,高鹏,冯栋,王晓玮,侯恩科. 基于AHP-熵权法耦合方法的地质构造复杂程度定量评价. 煤炭科学技术. 2022(11): 140-149 .
![]() | |
10. |
尹会永,周鑫龙,郎宁,张历峰,王明丽,吴焘,李鑫. 基于SSA优化的GA-BP神经网络煤层底板突水预测模型与应用. 煤田地质与勘探. 2021(06): 175-185 .
![]() | |
11. |
黄欢,朱宏军. 基于“富水性指数法”的煤层顶板含水层涌水危险性评价. 煤矿安全. 2020(02): 192-196 .
![]() | |
12. |
施龙青,张荣遨,韩进,丛培章,秦道霞,郭玉成. 基于熵权法-层次分析法耦合赋权的多源信息融合突水危险性评价. 河南理工大学学报(自然科学版). 2020(03): 17-25 .
![]() | |
13. |
韩承豪,魏久传,谢道雷,徐建国,张伟杰,赵智超. 基于集对分析-可变模糊集耦合法的砂岩含水层富水性评价——以宁东矿区金家渠井田侏罗系直罗组含水层为例. 煤炭学报. 2020(07): 2432-2443 .
![]() | |
14. |
刘伟韬,孙茜,徐百超. 基于GIS及主成分熵权法的底板突水危险性评价. 矿业研究与开发. 2020(11): 83-88 .
![]() | |
15. |
董丽丽,费城,张翔,曹超凡. 基于LSTM神经网络的煤矿突水预测. 煤田地质与勘探. 2019(02): 137-143 .
![]() | |
16. |
王志刚,付小锦,梁杰,曹健,江胜国. 天津静海含煤区无井式煤炭地下气化选址地质评价模型. 煤田地质与勘探. 2019(03): 41-48 .
![]() | |
17. |
刘德民,尹尚先,连会青. 煤矿工作面底板突水灾害预警重点监测区域评价技术. 煤田地质与勘探. 2019(05): 9-15 .
![]() | |
18. |
霍丙杰,解振华,范张磊,荆雪冬. 陷落柱渗流突水机理及强度主控因素模拟. 煤田地质与勘探. 2019(06): 84-91 .
![]() | |
19. |
胡今朝,林雨佳. 层次分析法在矿山地质环境检测中的应用. 世界有色金属. 2018(22): 276-277 .
![]() |