LI Xunchang, YE Junwen, LI Ge, LI Jun. Elman neural network dynamic prediction based on landslide monitoring data[J]. COAL GEOLOGY & EXPLORATION, 2018, 46(3): 113-120,126. DOI: 10.3969/j.issn.1001-1986.2018.03.019
Citation: LI Xunchang, YE Junwen, LI Ge, LI Jun. Elman neural network dynamic prediction based on landslide monitoring data[J]. COAL GEOLOGY & EXPLORATION, 2018, 46(3): 113-120,126. DOI: 10.3969/j.issn.1001-1986.2018.03.019

Elman neural network dynamic prediction based on landslide monitoring data

Funds: 

The Basic Scientific Research Operating Expenses of the Central University(310826172203,310826161018)

More Information
  • Received Date: November 13, 2017
  • Published Date: June 24, 2018
  • The landslide is a very frequent geological disaster in China, and its monitoring curve of the accumulative displacement has complex nonlinear property. Researchers have established many prediction models, however, the accuracy of these prediction models is not satisfactory. Based on the Elman neural network which can approximate any arbitrary nonlinear function by arbitrary precision, this paper takes the equation for sigmoid as the kernel function, and uses the method of trial when choosing hidden layer, and through the "3δ" method and normalized engineering instance of landslides to accumulate displacement data, and then Elman neural network dynamic prediction model is established. The model made dynamic prediction to the multiple monitoring data and the results show that the goodness of fit between the model prediction results and the measured data is quite high, and the average error is 1.78%, which means that the prediction accuracy is relatively high, which can verify the Elman neural network can play a role in the prediction of landslide disasters.
  • [1]
    尚文涛. 基于监测数据的滑坡预测与数值模拟研究[D]. 重庆:重庆交通大学,2009.
    [2]
    祝建,蔡庆娥,姜海波. 西藏樟木口岸古滑坡变形监测分析[J]. 工程地质学报,2010,18(1):66-71.

    ZHU Jian,CAI Qing'e,JIANG Haibo. Analysis of deformation monitoring of ancient landslide in Zhangmu port in Tibet[J]. Journal of Engineering Geology,2010,18(1):66-71.
    [3]
    张超,汪家林,赵飞. 某滑坡变形监测成果分析及预警研究[J]. 甘肃水利水电技术,2011,47(8):16-18.

    ZHANG Chao,WANG Jialin,ZHAO Fei. Analysis and early warning of a landslide deformation monitoring[J]. Gansu Hydropower Technology,2011,47(8):16-18.
    [4]
    许强,曾裕平. 具有蠕变特点滑坡的加速度变化特征及临滑预警指标研究[J]. 岩石力学与工程学报,2009,28(6):1099-1106.

    XU Qiang,ZENG Yuping. Study on the acceleration and change characteristics of creep characteristics and the study of the velocity of sliding warning[J]. Journal of Rock Mechanics and Engineering,2009,28(6):1099-1106.
    [5]
    崔立志. 灰色预测技术及其应用研究[D]. 南京:南京航空航天大学,2010.
    [6]
    周金勇. 混沌时间序列预测模型研究[D]. 武汉:武汉理工大学,2009.
    [7]
    张琦,邵立福. 基于Elman神经网络的液压泵故障诊断模型研究[J]. 机床与液压,2004(10):274-275.

    ZHANG Qi,SHAO Lifu. Research on the fault diagnosis model of hydraulic pump based on Elman neural network[J]. Machine Tool & Hydraulics,2004(10):274-275.
    [8]
    许强,曾裕平. 具有蠕变特点滑坡的加速度变化特征及临滑预警指标研究[J]. 岩石力学与工程学报,2009,28(6):1099-1106.

    XU Qiang,ZHENG Yuping. Have the characteristics of creep acceleration change characteristics of landslide and the sliding warning index in the study[J]. Chinese Journal of Rock Mechanics and Engineering,2009,28(6):1099-1106.
    [9]
    刘文明,刘万金,裴跟弟. 多属性神经网络反演预测煤层顶板岩性[J]. 煤田地质与勘探,2016,44(1):103-106.

    LIU Wenming,LIU Wanjin,PEI Gendi. Seismic multi-attributes inversion using neural network and its application in predicting lithology of coal seam's roof[J]. Coal Geology & Exploration,2016,44(1):103-106.
    [10]
    蒋洪涛,李海军. 结合遗传算法的BP神经网络训练方法研究[J]. 北方交通,2006(8):70-71.

    JIANG Hongtao,LI Haijun. Study on the BP neural network training method combining genetic algorithm[J]. Northern Communications,2006(8):70-71.
    [11]
    崔东文. 改进Elman神经网络在径流预测中的应用[J]. 水利水运工程学报,2013,38(2):71-77.

    CUI Dongwen. The application of Elman neural network in runoff prediction[J]. Hydro-Science and Engineering,2013,38(2):71-77.
    [12]
    邵珊珊,孙丽君. 基于Elman神经网络的燃气轮机功率预测方法研究[J]. 计算机科学与探索,2014,8(11):1358-1364.

    SHAO Shanshan,SUN Lijun. Research on the power prediction method of gas turbine based on Elman neural network[J]. Journal of Frontiers of Computer Science and Technology,2014,8(11):1358-1364.
    [13]
    范重言,孙华,任俊松,等. 基于Elman神经网络的压力传感器温度补偿的研究[J]. 机械,2011,38(12):5-7.

    FAN Zhongyan,SUN Hua,REN Junsong,et al. Research on temperature compensation of pressure sensor based on Elman neural network[J]. Machinery,2011,38(12):5-7.
    [14]
    何明,李彬. 基于Elman神经网络的装甲装备维修保障系统效能评估[J]. 指挥控制与仿真,2008,30(4):77-80.

    HE Ming,LI Bin. Based on Elman neural network,the performance evaluation of armored equipment maintenance support system[J]. Command Control & Simulation,2008,30(4):77-80.
    [15]
    秦宇. 基于人工神经网络的四相整流器故障诊断方法研究[D]. 南宁:广西大学,2013.
    [16]
    李徐辉. 光伏发电系统监控与发电预测模型研究[D]. 上海:东华大学,2012.
    [17]
    程忠庆,葛珂楠,阚泽宝. 基于Elman神经网络的除湿系统能耗预测[J]. 计算机工程与设计,2014,35(2):677-680.

    CHEN Zhongqing,GE Kenan,KAN Zebao. Energy consumption prediction of dehumidification system based on Elman neural network[J]. Computer Engineering and De-sign,2014,35(2):677-680.
    [18]
    盛银. 递归神经网络的稳定性分析[D]. 武汉:华中科技大学,2016.
    [19]
    周宗华,姜丽琴,林照耀,等. 统计分析在滑坡监测数据粗差判别中的应用[J]. 科技创业月刊,2009,22(6):158-159.

    ZHOU Zonghua,JIANG Liqin,LI Zhaoyao,et al. The application of statistical analysis in the analysis of the coarse difference of landslide monitoring data[J]. Pioneering with Science & Technology Monthly,2009,22(6):158-159.
    [20]
    张国栋,龙海涛,易庆林,等. 基于地表位移监测成果的水库型滑坡变形机制分析[J]. 水利学报,2014,45(增刊2):73-76.

    ZHANG Guodong,LONG Haitao,YI Qinglin,et al. Analysis of deformation mechanism of reservoir landslide based on surface displacement monitoring results[J]. Journal of Hydraulic Engineering,2014,45(S2):73-76.
    [21]
    宋桂林,肖诗荣,明成涛,等. 三峡库区黄莲树滑坡启动变形监测分析[J]. 三峡大学学报(自然科学版),2014,36(4):32-36.

    SONG Guilin,XIAO Shirong,MING Chengtao,et al. Analysis of the deformation monitoring of huanglian landslide in the gorge reservoir area[J]. Journal of China Three Gorges University(Natural Sciences),2014,36(4):32-36.
    [22]
    靳晓光,王兰生,李晓红. 二郎山和平沟滑坡变形监测及趋势分析[J]. 长江科学院院报,2001,18(4):40-43.

    JIN Xiaoguang,WANG Lansheng,LI Xiaohong. Analysis of deformation monitoring and trend of the landslide in Erlang mountain[J]. Journal of Yangtze River Scientific Research Institute,2001,18(4):40-43.
    [23]
    钱波,郭宁,袁前胜. 向家坝电站马延坡滑坡变形监测分析[J]. 路基工程,2009(2):202-203.

    QIAN Bo,GUO Ning,YUAN Qiansheng. Analysis of deformation monitoring of landslide in ma yanpo hydropower station[J]. Journal of Yangtze River Scientific Research Institute,2009(2):202-203.
    [24]
    钱佳. PCB人工焊接缺陷检测与识别算法研究[D]. 上海:华东理工大学,2015.
    [25]
    王东亚. 基于自适应遗传人工神经网络的集中供热负荷预测与控制研究[D]. 阜新:辽宁工程技术大学,2005.
    [26]
    张艳. 黄土高原老滑坡成因机理及稳定性分析[D]. 西安:长安大学,2014.
  • Related Articles

    [1]WU Peng, HU Weiqiang, LI Yangbing, MA Litao, LI Yong, ZHAO Fei, NIU Yanwei, CHEN Jianqi, LI Panpan, LIU Zaizhen, LI Chenchen, CAO Di, LIU Cheng. Geochemical characteristics and influencing factors of deep coalbed methane in the Linxing-Shenfu block[J]. COAL GEOLOGY & EXPLORATION, 2024, 52(5): 56-66. DOI: 10.12363/issn.1001-1986.23.10.0632
    [2]ZHANG Cong, LI Mengxi, HU Qiujia, JIA Huimin, LI Kexin, WANG Qi, YANG Ruiqiang. Moderately deep coalbed methane reservoirs in the southern Qinshui Basin: Characteristics and technical strategies for exploitation[J]. COAL GEOLOGY & EXPLORATION, 2024, 52(2): 122-133. DOI: 10.12363/issn.1001-1986.23.10.0624
    [3]ZHANG Cong, LI Mengxi, FENG Shuren, HU Qiujia, QIAO Maopo, WU Dingquan, YU Jiasheng, LI Kexin. Reservoir properties and gas production difference between No.15 coal and No.3 coal in Zhengzhuang Block, southern Qinshui Basin[J]. COAL GEOLOGY & EXPLORATION, 2022, 50(9): 145-153. DOI: 10.12363/issn.1001-1986.21.12.0816
    [4]HE Huan, HUANG Xinying, HUANG Zaixing, ZHANG Qian, CHEN Zihao, ZHAO Han, REN Hengxing, HUANG Guanhua. Effect of kaolin on biogenic coalbed methane production and the response of microbial community[J]. COAL GEOLOGY & EXPLORATION, 2022, 50(6): 1-10. DOI: 10.12363/issn.1001-1986.21.08.0463
    [5]SU Xianbo, WANG Lufei, ZHAO Weizhong, XIA Daping, ZHOU Yixuan, WANG Qian. Physical simulation of in-situ microbial methanation in coal reservoirs with the participation of supercritical CO2[J]. COAL GEOLOGY & EXPLORATION, 2022, 50(3): 119-126. DOI: 10.12363/issn.1001-1986.21.11.0684
    [6]WANG Xiangye, SUN Baoping. Geochemical characteristics and their origin of CBM in Xingxian area, Ordos basin[J]. COAL GEOLOGY & EXPLORATION, 2020, 48(4): 156-164,173. DOI: 10.3969/j.issn.1001-1986.2020.04.022
    [7]YI Yongxiang, TANG Shuheng, ZHANG Songhang, YAN Xinlu, WANG Kaifeng, DANG Feng. Analysis on the type of reservoir pressure drop and drainage control of coalbed methane well in the southern block of Shizhuang[J]. COAL GEOLOGY & EXPLORATION, 2019, 47(5): 118-126. DOI: 10.3969/j.issn.1001-1986.2019.05.016
    [8]FENG Shuren, ZHANG Cong, ZHANG Jinxiao, LIU Zhong, CUI Xinrui, CHAO Weiwei. Gas-water differentiation characteristics of CBM reservoirs in Xiadian block, Qinshui basin[J]. COAL GEOLOGY & EXPLORATION, 2018, 46(5): 129-134. DOI: 10.3969/j.issn.1001-1986.2018.05.020
    [9]XU Chao, CHEN Bingyu, WU Dun, DING Dianshi, XIA Yuanyuan, LIU Guijian. Distribution characteristics of isotope carbon and its geological origin in coal & gas carbon of Qidong coal mine, Huaibei coalfield[J]. COAL GEOLOGY & EXPLORATION, 2017, 45(3): 54-58. DOI: 10.3969/j.issn.1001-1986.2017.03.010
    [10]XU Gang, LI Shugang, DING Yang. Classification of coalbed methane enrichment units in Qinshui basin[J]. COAL GEOLOGY & EXPLORATION, 2013, 41(6): 22-26. DOI: 10.3969/j.issn.1001-1986.2013.06.006
  • Cited by

    Periodical cited type(10)

    1. 王勃,徐凤银,金雪,王立龙,屈争辉,张文胜,李志,刘国伟,张艺腾,史鸣剑. 沁水盆地郑庄区块煤层气井产出水化学成分演变及其高产响应. 石油学报. 2024(11): 1638-1651 .
    2. 王阳,向杰,秦勇,陈尚斌,朱炎铭,黄曼莉,石莹. 阳泉-晋城矿区关闭煤矿煤层气资源特征及抽采模式. 煤炭科学技术. 2024(12): 165-179 .
    3. 简阔,傅雪海,夏大平,冯睿智,李咪,吉小峰. 我国次生生物成因煤层气研究进展. 煤矿安全. 2023(04): 11-21 .
    4. 梁运培,李左媛,朱拴成,陈强,王鑫,秦朝中. 关闭/废弃煤矿甲烷排放研究现状及减排对策. 煤炭学报. 2023(04): 1645-1660 .
    5. 华明国,田林,张燕,李佳,曹永恒. 潞安矿区煤层气井产出水地球化学特征及意义. 煤田地质与勘探. 2022(02): 65-71 . 本站查看
    6. 吴金刚,毛俊睿. 中国废弃煤矿瓦斯资源评价与抽采利用研究进展. 煤矿安全. 2021(07): 162-169 .
    7. 刘建华,王生维,张晓飞. 顺煤层井煤屑录井法在废弃矿区二次开发中的应用研究. 煤炭技术. 2021(09): 11-14 .
    8. 李忠城,吴建光,王建中,吴翔,卢国军. 沁水盆地南部15号煤层和顶板K_2灰岩水文地球化学演化特征. 煤田地质与勘探. 2020(03): 75-80 . 本站查看
    9. 马凯,马钱钱,史永涛. 远红外作用下不同含水率煤体吸附/解吸能量变化规律. 煤田地质与勘探. 2020(03): 86-92 . 本站查看
    10. 王相业,孙保平. 鄂尔多斯盆地兴县地区煤层气地球化学特征及成因. 煤田地质与勘探. 2020(04): 156-164+173 . 本站查看

    Other cited types(9)

Catalog

    Article Metrics

    Article views (97) PDF downloads (3) Cited by(19)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return