LI Xunchang, YE Junwen, LI Ge, LI Jun. Elman neural network dynamic prediction based on landslide monitoring data[J]. COAL GEOLOGY & EXPLORATION, 2018, 46(3): 113-120,126. DOI: 10.3969/j.issn.1001-1986.2018.03.019
Citation: LI Xunchang, YE Junwen, LI Ge, LI Jun. Elman neural network dynamic prediction based on landslide monitoring data[J]. COAL GEOLOGY & EXPLORATION, 2018, 46(3): 113-120,126. DOI: 10.3969/j.issn.1001-1986.2018.03.019

Elman neural network dynamic prediction based on landslide monitoring data

Funds: 

The Basic Scientific Research Operating Expenses of the Central University(310826172203,310826161018)

More Information
  • Received Date: November 13, 2017
  • Published Date: June 24, 2018
  • The landslide is a very frequent geological disaster in China, and its monitoring curve of the accumulative displacement has complex nonlinear property. Researchers have established many prediction models, however, the accuracy of these prediction models is not satisfactory. Based on the Elman neural network which can approximate any arbitrary nonlinear function by arbitrary precision, this paper takes the equation for sigmoid as the kernel function, and uses the method of trial when choosing hidden layer, and through the "3δ" method and normalized engineering instance of landslides to accumulate displacement data, and then Elman neural network dynamic prediction model is established. The model made dynamic prediction to the multiple monitoring data and the results show that the goodness of fit between the model prediction results and the measured data is quite high, and the average error is 1.78%, which means that the prediction accuracy is relatively high, which can verify the Elman neural network can play a role in the prediction of landslide disasters.
  • [1]
    尚文涛. 基于监测数据的滑坡预测与数值模拟研究[D]. 重庆:重庆交通大学,2009.
    [2]
    祝建,蔡庆娥,姜海波. 西藏樟木口岸古滑坡变形监测分析[J]. 工程地质学报,2010,18(1):66-71.

    ZHU Jian,CAI Qing'e,JIANG Haibo. Analysis of deformation monitoring of ancient landslide in Zhangmu port in Tibet[J]. Journal of Engineering Geology,2010,18(1):66-71.
    [3]
    张超,汪家林,赵飞. 某滑坡变形监测成果分析及预警研究[J]. 甘肃水利水电技术,2011,47(8):16-18.

    ZHANG Chao,WANG Jialin,ZHAO Fei. Analysis and early warning of a landslide deformation monitoring[J]. Gansu Hydropower Technology,2011,47(8):16-18.
    [4]
    许强,曾裕平. 具有蠕变特点滑坡的加速度变化特征及临滑预警指标研究[J]. 岩石力学与工程学报,2009,28(6):1099-1106.

    XU Qiang,ZENG Yuping. Study on the acceleration and change characteristics of creep characteristics and the study of the velocity of sliding warning[J]. Journal of Rock Mechanics and Engineering,2009,28(6):1099-1106.
    [5]
    崔立志. 灰色预测技术及其应用研究[D]. 南京:南京航空航天大学,2010.
    [6]
    周金勇. 混沌时间序列预测模型研究[D]. 武汉:武汉理工大学,2009.
    [7]
    张琦,邵立福. 基于Elman神经网络的液压泵故障诊断模型研究[J]. 机床与液压,2004(10):274-275.

    ZHANG Qi,SHAO Lifu. Research on the fault diagnosis model of hydraulic pump based on Elman neural network[J]. Machine Tool & Hydraulics,2004(10):274-275.
    [8]
    许强,曾裕平. 具有蠕变特点滑坡的加速度变化特征及临滑预警指标研究[J]. 岩石力学与工程学报,2009,28(6):1099-1106.

    XU Qiang,ZHENG Yuping. Have the characteristics of creep acceleration change characteristics of landslide and the sliding warning index in the study[J]. Chinese Journal of Rock Mechanics and Engineering,2009,28(6):1099-1106.
    [9]
    刘文明,刘万金,裴跟弟. 多属性神经网络反演预测煤层顶板岩性[J]. 煤田地质与勘探,2016,44(1):103-106.

    LIU Wenming,LIU Wanjin,PEI Gendi. Seismic multi-attributes inversion using neural network and its application in predicting lithology of coal seam's roof[J]. Coal Geology & Exploration,2016,44(1):103-106.
    [10]
    蒋洪涛,李海军. 结合遗传算法的BP神经网络训练方法研究[J]. 北方交通,2006(8):70-71.

    JIANG Hongtao,LI Haijun. Study on the BP neural network training method combining genetic algorithm[J]. Northern Communications,2006(8):70-71.
    [11]
    崔东文. 改进Elman神经网络在径流预测中的应用[J]. 水利水运工程学报,2013,38(2):71-77.

    CUI Dongwen. The application of Elman neural network in runoff prediction[J]. Hydro-Science and Engineering,2013,38(2):71-77.
    [12]
    邵珊珊,孙丽君. 基于Elman神经网络的燃气轮机功率预测方法研究[J]. 计算机科学与探索,2014,8(11):1358-1364.

    SHAO Shanshan,SUN Lijun. Research on the power prediction method of gas turbine based on Elman neural network[J]. Journal of Frontiers of Computer Science and Technology,2014,8(11):1358-1364.
    [13]
    范重言,孙华,任俊松,等. 基于Elman神经网络的压力传感器温度补偿的研究[J]. 机械,2011,38(12):5-7.

    FAN Zhongyan,SUN Hua,REN Junsong,et al. Research on temperature compensation of pressure sensor based on Elman neural network[J]. Machinery,2011,38(12):5-7.
    [14]
    何明,李彬. 基于Elman神经网络的装甲装备维修保障系统效能评估[J]. 指挥控制与仿真,2008,30(4):77-80.

    HE Ming,LI Bin. Based on Elman neural network,the performance evaluation of armored equipment maintenance support system[J]. Command Control & Simulation,2008,30(4):77-80.
    [15]
    秦宇. 基于人工神经网络的四相整流器故障诊断方法研究[D]. 南宁:广西大学,2013.
    [16]
    李徐辉. 光伏发电系统监控与发电预测模型研究[D]. 上海:东华大学,2012.
    [17]
    程忠庆,葛珂楠,阚泽宝. 基于Elman神经网络的除湿系统能耗预测[J]. 计算机工程与设计,2014,35(2):677-680.

    CHEN Zhongqing,GE Kenan,KAN Zebao. Energy consumption prediction of dehumidification system based on Elman neural network[J]. Computer Engineering and De-sign,2014,35(2):677-680.
    [18]
    盛银. 递归神经网络的稳定性分析[D]. 武汉:华中科技大学,2016.
    [19]
    周宗华,姜丽琴,林照耀,等. 统计分析在滑坡监测数据粗差判别中的应用[J]. 科技创业月刊,2009,22(6):158-159.

    ZHOU Zonghua,JIANG Liqin,LI Zhaoyao,et al. The application of statistical analysis in the analysis of the coarse difference of landslide monitoring data[J]. Pioneering with Science & Technology Monthly,2009,22(6):158-159.
    [20]
    张国栋,龙海涛,易庆林,等. 基于地表位移监测成果的水库型滑坡变形机制分析[J]. 水利学报,2014,45(增刊2):73-76.

    ZHANG Guodong,LONG Haitao,YI Qinglin,et al. Analysis of deformation mechanism of reservoir landslide based on surface displacement monitoring results[J]. Journal of Hydraulic Engineering,2014,45(S2):73-76.
    [21]
    宋桂林,肖诗荣,明成涛,等. 三峡库区黄莲树滑坡启动变形监测分析[J]. 三峡大学学报(自然科学版),2014,36(4):32-36.

    SONG Guilin,XIAO Shirong,MING Chengtao,et al. Analysis of the deformation monitoring of huanglian landslide in the gorge reservoir area[J]. Journal of China Three Gorges University(Natural Sciences),2014,36(4):32-36.
    [22]
    靳晓光,王兰生,李晓红. 二郎山和平沟滑坡变形监测及趋势分析[J]. 长江科学院院报,2001,18(4):40-43.

    JIN Xiaoguang,WANG Lansheng,LI Xiaohong. Analysis of deformation monitoring and trend of the landslide in Erlang mountain[J]. Journal of Yangtze River Scientific Research Institute,2001,18(4):40-43.
    [23]
    钱波,郭宁,袁前胜. 向家坝电站马延坡滑坡变形监测分析[J]. 路基工程,2009(2):202-203.

    QIAN Bo,GUO Ning,YUAN Qiansheng. Analysis of deformation monitoring of landslide in ma yanpo hydropower station[J]. Journal of Yangtze River Scientific Research Institute,2009(2):202-203.
    [24]
    钱佳. PCB人工焊接缺陷检测与识别算法研究[D]. 上海:华东理工大学,2015.
    [25]
    王东亚. 基于自适应遗传人工神经网络的集中供热负荷预测与控制研究[D]. 阜新:辽宁工程技术大学,2005.
    [26]
    张艳. 黄土高原老滑坡成因机理及稳定性分析[D]. 西安:长安大学,2014.
  • Related Articles

    [1]LIANG Xu, MA Yue, LIU Chao, CHEN Zhen, JIA Dongdong, LI Zhiyong, PAN Wenyong. Visco-elastic full-waveform inversion based on multi-objective function[J]. COAL GEOLOGY & EXPLORATION, 2023, 51(4): 152-163. DOI: 10.12363/issn.1001-1986.22.08.0634
    [2]LI Lijing, CHANG Dashuai, LI Lei, CHAI Junfei. A fault diagnosis method of rescue lifting vehicle based on spectral clustering[J]. COAL GEOLOGY & EXPLORATION, 2023, 51(3): 186-194. DOI: 10.12363/issn.1001-1986.22.05.0435
    [3]ZHU Xi'an, LI Feilong. A comparative study of the translation algorithm and kernel function algorithm for the large fixed loop[J]. COAL GEOLOGY & EXPLORATION, 2016, 44(3): 120-123,127. DOI: 10.3969/j.issn.1001-1986.2016.03.023
    [4]ZHANG Huanlan, ZHU Guangming, WANG Baoli. Study and application of objective function in microseismic source location[J]. COAL GEOLOGY & EXPLORATION, 2015, 43(6): 105-108. DOI: 10.3969/j.issn.1001-1986.2015.06.022
    [5]LIU Ye-ling, ZHANG Hai-yan, LAI Xing-ping. Forecast model based on SVM during coal crack and destabilization[J]. COAL GEOLOGY & EXPLORATION, 2007, 35(3): 62-65.
    [6]GUO Jianqing, LI Yunfeng, WANG Hongsheng. THE INVERSE FUNCTION METHOD FOR ANALYZING THE DATA OF QUASI STEADY RADIAL DISPERSION TEST[J]. COAL GEOLOGY & EXPLORATION, 2000, 28(6): 36-39.
    [7]LI Chao-feng, YU Zhi-wei, HAN Bao-ping. THE ESTIMATION OF WATER YIELD OF HONGYAN COAL MINE WITH KERNEL FUNCTION[J]. COAL GEOLOGY & EXPLORATION, 1998, 26(5): 41-44.
    [8]Jiang Yule, Zhong Benshan, Li Yongjie. CARBONIFEROUS RESERVOIR PREDICTION TEST USING ARTIFICIAL NEURAL NETWORK METHOD IN REGION OF EASTERN SICHUAN PROVINCE[J]. COAL GEOLOGY & EXPLORATION, 1995, 23(5): 44-47.
    [9]Hu Jiande. THE CORRECTIONS OF EFFECT OF RAMP FUNCTION TURN-OFF AND INVERSION COMPUTATIONAL METHODS TO THE TEM[J]. COAL GEOLOGY & EXPLORATION, 1995, 23(1): 51-54.
    [10]Mao Shanjun, Zheng Shengfei. DYNAMIC PREDICTION FOR OUT BURST OF COAL AND GAS[J]. COAL GEOLOGY & EXPLORATION, 1992, 20(2): 36-39.
  • Cited by

    Periodical cited type(21)

    1. 刘振新,李金朋,桂名薇,李行. 山西沁水管道某滑坡变形特征及预警分析. 勘察科学技术. 2024(03): 28-33 .
    2. 翟玉斌. 滑坡勘察成果分析及后续应用效果评价. 江西建材. 2024(08): 211-213+216 .
    3. 林峰. 降雨作用下岩层边坡变形数值模拟分析. 水利科技与经济. 2024(12): 34-37 .
    4. 成睿,李素敏,韩追,毛嘉骐,李彦臣. 时序InSAR与GWO-VMD相结合的地表沉降预测. 贵州大学学报(自然科学版). 2023(03): 78-85 .
    5. 王志彪,赵丽华. 遗传算法与粒子群优化的Elman神经网络模型预测黄土滑坡变形. 大地测量与地球动力学. 2023(07): 679-684 .
    6. 吴嵩,宁晓斌,杨庭伟,姜洪亮,卢超波,苏煜堤. 基于神经网络的探地雷达数据去噪. 物探与化探. 2023(05): 1298-1306 .
    7. 高宁,戚鑫鑫,杨逸飞,高彩云. 基于WOA优化Elman神经网络的露天矿边坡位移预测. 河南城建学院学报. 2023(06): 89-95 .
    8. 黄虎城,袁颖,任涛,张天亮. 基于Elman神经网络的地面沉降危险性预测. 自然灾害学报. 2022(04): 201-209 .
    9. 党升,冯晓,卢志豪,陈茂霖,韦春桃. 基于相关系数的滑坡位移新陈代谢组合预测研究. 人民长江. 2021(07): 95-100 .
    10. 张明岳,李丽敏,温宗周. RNN与LSTM方法用于滑坡位移动态预测的研究. 人民珠江. 2021(09): 6-13 .
    11. 白相文,杨建华,杨志强. 神经网络辅助的组合导航算法研究. 导航定位学报. 2020(01): 93-98 .
    12. 吴健生,罗宇航,王小玉,赵宇豪. 城市滑坡灾害生态风险不确定性分析及风险管理——以深圳市为例. 生态学报. 2020(11): 3612-3621 .
    13. 张磊,张盛生,田成成. 库区滑坡变形特征分析及发展规律研究. 中国锰业. 2020(03): 68-74 .
    14. 袁乾博,肖诗荣,李春霞,夏宇,王涛. 基于GLSSVM模型的三门洞滑坡变形预测研究. 人民长江. 2020(07): 130-135 .
    15. 王珲. 基于ZigBee对地震勘探数据精度提高技术的方法研究. 地震工程学报. 2020(04): 907-913 .
    16. 康会宾. 基于误差补偿智能预测模型的滑坡变形预测研究. 人民长江. 2020(09): 122-128 .
    17. 陈竹安,熊鑫,危小建. 利用卡尔曼滤波综合算法构建开采沉陷预测模型. 金属矿山. 2019(05): 132-136 .
    18. 朱旭辉,魏自来. GWO-LSSVM耦合模型在变形预测中的应用. 北京测绘. 2019(07): 835-838 .
    19. 张国茂,彭文祥. 斜支撑支护基坑与相邻地下室有限土体土压力反演分析. 煤田地质与勘探. 2019(04): 124-130 . 本站查看
    20. 贾志琴,史元浩,梁建宇,李登耀. 基于Elman神经网络的受热面积灰动态预测. 电子测量与仪器学报. 2019(09): 50-56 .
    21. 舒服华. 基于Elman神经网络的湖北省固定资产投资额预测. 广东培正学院论丛. 2019(04): 12-16 .

    Other cited types(19)

Catalog

    Article Metrics

    Article views (97) PDF downloads (3) Cited by(40)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return