QIAO Meiying, CHENG Pengfei, LIU Zhenzhen. Mine water inflow prediction based on GA-SVM[J]. COAL GEOLOGY & EXPLORATION, 2017, 45(6): 117-122. DOI: 10.3969/j.issn.1001-1986.2017.06.019
Citation: QIAO Meiying, CHENG Pengfei, LIU Zhenzhen. Mine water inflow prediction based on GA-SVM[J]. COAL GEOLOGY & EXPLORATION, 2017, 45(6): 117-122. DOI: 10.3969/j.issn.1001-1986.2017.06.019

Mine water inflow prediction based on GA-SVM

Funds: 

National Natural Science Foundation of China(61573129, 51474096)

More Information
  • Received Date: November 09, 2016
  • Published Date: December 24, 2017
  • The accurate prediction of mine water inflow is very important to prevent mine water inrush accident. In this paper, the SVM model optimized by GA(GA-SVM) was put forward to realize the short term and accurate prediction of mine water inflow. In this method the automatic optimization function of GA was used to find the optimal parameters of SVM, which can improve the accuracy of prediction. Firstly, the optimal embedding dimension and delay time of mine water inflow were obtained by using the entropy ratio method, then the phase space was reconstructed. Secondly, the actual time series of water inflow from 2011-2015 in Qianqiu coal mine of Yima Coal Group Company were collected. GA-SVM model was used to predict the final 12 sets of data, the mean absolute percentage error was only 0.92%, the maxmum relative error was 2.62%. Finally, compared with the PSO-SVM and BP neural network method, the prediction results show that the proposed GA-SVM optimization model is suitable for the prediction of mine water inflow and the prediction accuracy is higher.
  • [1]
    彭辉才,徐卫东,付青,等. 贵州绿塘煤矿涌水量预测研究[J]. 南水北调与水利科技,2013,11(2):58-61.

    PENG Huicai,XU Weidong,FU Qing,et al. Research on prediction of water inflow in Lvtang coal mine of Guizhou Province[J]. South-to-North Water Transfers and Water Science & Technology,2013,11(2):58-61.
    [2]
    曹楠,申太丽,许向宁,等. 西藏雄村铜矿水文地质特征及矿坑涌水量预测[J]. 四川地质学报,2008,28(3):220-224.

    CAO Nan,SHEN Taili,XU Xiangning,et al. Hydrogeological characteristics of the Xiongcun copper deposit in Tibet and its prediction of water yield of mine[J]. Acta Geologica Sichuan, 2008,28(3):220-224.
    [3]
    刘永良,潘国营. 基于Visual Modflow的岩溶水疏降流场模拟和涌水量预测[J]. 河南理工大学学报(自然科学版),2009, 28(1):51-54.

    LIU Yongliang,PAN Guoying. Mine inflow prediction and numerical simulation on descending flow field of karst water based on Visual Modflow[J]. Editorial Board of Journal of HPU(Nature Science),2009,28(1):51-54.
    [4]
    刘大野,陈立云,徐会. 矿井单位涌水量比拟法在矿井涌水量预测中的应用[J]. 中国煤炭地质,2010,22(10):41-44.

    LIU Daye,CHEN Liyun,XU Hui,et al. Application of mine specific capacity analogue method in mine water inflow prediction[J]. Coal Geology of China,2010,22(10):41-44.
    [5]
    朱愿福,王长申,李彦周,等. 改进的灰色系统理论预测矿井涌水量[J]. 煤田地质与勘探,2014,42(4):44-49.

    ZHU Yuanfu,WANG Changshen,LI Yanzhou,et al. Prediction of mine water inflow with modified grey system theory[J]. Coal Geology & Exploration,2014,42(4):44-49.
    [6]
    窦贤明,杨永国,徐伟伟,等. 基于遗传算法和BP神经网络的矿井涌水量预测[J]. 中国煤炭地质,2009,21(10):37-66.

    DOU Xianming,YANG Yongguo,XU Weiwei,et al. Prediction of mine inflow based on genetic algorithm and BP neural network[J]. Coal Geology of China,2009,21(10):37-66.
    [7]
    陈玉华,杨永国,彭高辉,等. 矿井涌水量混沌时间序列分析与预测[J]. 煤田地质与勘探,2008,36(4):34-36.

    CHEN Yuhua,YANG Yongguo,PENG Gaohui,et al. Chaotic time series analysis and prediction for mine water inflow[J]. Coal Geology & Exploration,2008,36(4):34-36.
    [8]
    汪伟,罗周全,王益伟,等. 基于混沌理论的矿井涌水量预测研究[J]. 中国安全科学学报,2013,23(4):51-56.

    WANG Wei,LUO Zhouquan,WANG Yiwei,et al. Research into mine water inflow forecast based on chaotic theory[J]. China Safety Science Journal,2013,23(4):51-56.
    [9]
    安欣,贾进章. 矿井涌水量时间序列ARIMA预测模型[J]. 辽宁工程技术大学学报(自然科学版),2015,34(7):785-790.

    AN Xin,JIA Jinzhang. Time serier prediction of mine water inflow of ARIMA model[J]. Journal of Liaoning Technical University(Natural Science),2015,34(7):785-790.
    [10]
    TAKENS F. Dynamical systems and turbulence[M]. Berlin:Springer-Verlag Press,1981:366-381.
    [11]
    马红光,李夕海,王国华,等. 相空间重构中嵌入维和时间延迟的选择[J]. 西安交通大学学报,2004,38(4):335-338.

    MA Hongguang,LI Xihai,WANG Guohua,et al. Selection of embedding dimension and delay time in phase space reconstruction[J]. Journal of Xi'an Jiaotong University,2004,38(4):335-338.
    [12]
    胡瑜,陈涛. 基于C-C算法的混沌吸引子的相空间重构技术[J]. 电子测量与仪器学报,2012,26(5):425-430.

    HU Yu,CHEN Tao. Phase-space reconstruction technology of chaotic attractor based on C-C method[J]. Journal of Electronic Measurement and Instrument,2012,26(5):425-430.
    [13]
    张华强,张晓燕. 基于混沌理论和LSSVM的蒸汽负荷预测[J]. 系统工程理论与实践,2013,33(4):1058-1066.

    ZHANG Huaqiang,ZHANG Xiaoyan. Steam load forecasting based on chaos theory and LSSVM[J]. System Engineer-Theory & Practice,2013,33(4):1058-1066.
    [14]
    GAUTAMA T,MANDIC D P,VAN HULLE M M. A differential Entropy based method for determining the optimal embedding parameters of a signal[C]//Proc of the Int Conf an Acoustic,Speech and Signal Processing. Hongkong,2003:29-32.
    [15]
    邵良杉,马寒. 煤体瓦斯渗透率的PSO-LSSVM预测模型[J]. 煤田地质与勘探,2015,43(4):23-26.

    SHAO Liangshan,MA Han. Model of coal gas permeability prediction based on PSO-LSSVM[J]. Coal Geology & Exploration,2015,43(4):23-26.
    [16]
    乔立岩,彭喜元,马云形. 基于遗传算法和支持向量机的特征子集选择方法[J]. 电子测量与仪器学报,2006,20(1):1-5.

    QIAO Liyan,PENG Xiyuan,MA Yunxing,et al. GA-SVMbased feature subset selection algorithm[J]. Journal of Electronic Measurement and Instrument,2006,20(1):1-5.
    [17]
    郭瑞,徐广璐. 基于信息融合与GA-SVM的煤矿瓦斯浓度多传感器预测模型研究[J]. 中国安全科学学报,2013,23(9):34-38.

    GUO Rui,XU Guanglu. Research on coal mine gas concentration multi-sensor prediction model based on information fusion and GA-SVM[J]. China Safety Science Journal,2013,23(9):34-38.
  • Related Articles

    [1]ZHU Yinbin, LIAO Zhen, LI Changdong, LIU Hongbin, JIANG Xihui. Anisotropy in non-Darcy flow in individual rough-walled rock fractures[J]. COAL GEOLOGY & EXPLORATION, 2025, 53(2): 130-146. DOI: 10.12363/issn.1001-1986.24.09.0570
    [2]WANG Yun, ZHENG Yongqin, YANG Chun, ZHANG Yi, LI Yingda, ZHANG Huimin. A preliminary study on the multiscale effect of seismic anisotropy of coal seams at long wavelengths[J]. COAL GEOLOGY & EXPLORATION, 2023, 51(2): 263-272. DOI: 10.12363/issn.1001-1986.22.12.0921
    [3]GUO Jianlei, GAO Xiaowei, HOU Yanwei. Research on three-component responses characteristics of axial anisotropy tunnel-hole transient electromagnetic[J]. COAL GEOLOGY & EXPLORATION, 2022, 50(7): 52-62. DOI: 10.12363/issn.1001-1986.21.12.0878
    [4]XU Xunhui, ZHANG Guobiao, BAO Han, YAN Changgen. Anisotropic shear behavior of rock joint based on 3D printing technology[J]. COAL GEOLOGY & EXPLORATION, 2020, 48(1): 154-159,167. DOI: 10.3969/j.issn.1001-1986.2020.01.020
    [5]CHEN Benchi, WANG Chao, CHEN Changxing, SHI Lei. The effect of viscoelasticity and velocity anisotropy on the reflections of a thin bed[J]. COAL GEOLOGY & EXPLORATION, 2019, 47(5): 186-192. DOI: 10.3969/j.issn.1001-1986.2019.05.026
    [6]QIAN Jin, CUI Ruofei, CHEN Tongjun. Anisotropic numerical simulation of coal-bearing strata with finite-difference[J]. COAL GEOLOGY & EXPLORATION, 2010, 38(2): 63-67. DOI: 10.3969/j.issn.1001-1986.2010.02.016
    [7]ZHAO Hai-yan, GONG Wei-li. Characterization on anisotropic fractures of coal and rocks by computed X-ray tomography based on image segmentation[J]. COAL GEOLOGY & EXPLORATION, 2009, 37(6): 14-18. DOI: 10.3969/j.issn.1001-1986.2009.06.004
    [8]CUI Ruo-fei, QIAN Jin, CHEN Tong-jun, MAO Xin-rong, LI Ren-hai, LIU Wu, GAO Ji, CUI Da-wei. Locating the distribution of coalbed methane enriched area using seismic P-wave data[J]. COAL GEOLOGY & EXPLORATION, 2007, 35(6): 54-57.
    [9]SHI Ya-liu, NING Shu-nian, NING Jing. Study on the electrical anisotropy of cracked medium[J]. COAL GEOLOGY & EXPLORATION, 2005, 33(2): 65-67.
    [10]LI Jian-guo, WANG Ren, LI Xin-sheng, CHEN Fu-bing. Settlement calculation considering soil anisotropy[J]. COAL GEOLOGY & EXPLORATION, 2004, 32(2): 33-35.

Catalog

    Article Metrics

    Article views (167) PDF downloads (8) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return