LIU Zhimin, HAN Lei, ZHANG Weijie, WU Miao. Study on advanced scanning detection technology of dual-frequency induced polarization method with multi-point current sources in coal mine roadway[J]. COAL GEOLOGY & EXPLORATION, 2017, 45(4): 149-156,162. DOI: 10.3969/j.issn.1001-1986.2017.04.027
Citation: LIU Zhimin, HAN Lei, ZHANG Weijie, WU Miao. Study on advanced scanning detection technology of dual-frequency induced polarization method with multi-point current sources in coal mine roadway[J]. COAL GEOLOGY & EXPLORATION, 2017, 45(4): 149-156,162. DOI: 10.3969/j.issn.1001-1986.2017.04.027

Study on advanced scanning detection technology of dual-frequency induced polarization method with multi-point current sources in coal mine roadway

Funds: 

National Hi-Tech Research and Development Program of China(863 Program)(2012AA06A405)

More Information
  • Received Date: July 11, 2016
  • Published Date: August 24, 2017
  • The detection electrode arrangements of dual-frequency induced polarization method with multi-point current sources are designed in the heading face. According to the properties of stable current field, the differential equations of electric field lines with multi-point current sources are established and solved based on the fourth fifth-order variable step Runge-Kutta-Felhberg algorithm. Through defining the concept of detection field spatial angle and electric field lines boundary angle, this paper analyzes the average current density of the detection field variation with the main shielding current ratio coefficient and the distance from heading face to determine the range of the main shielding current ratio coefficient at focusing effect detection. When the constraint shielding current ratio coefficient and the main shielding current ratio coefficient are changed simultaneously, this paper analyzes the detection field deflection angle variation and its influence factors to determine the range of the constraint shielding current ratio coefficient at deflection effect detection. The industrial tests show that according to abnormal induced polarization effect parameters variation of the apparent frequency and the apparent resistivity, using this method for advanced scanning detection can effectively identify the geological structure characteristics of the surrounding rock and the direction of the low resistivity water-bearing anomaly in front of the heading face, but the accurate distance and the water content of the water-bearing anomaly are still need to be further studied.
  • [1]
    程久龙,李飞,彭苏萍,等. 矿井巷道地球物理方法超前探测研究进展与展望[J]. 煤炭学报,2014,39(8):1742-1750.

    CHENG Jiulong,LI Fei,PENG Suping,et al. Research progress and development direction on advanced detection in mine roadway working face using geophysical methods[J]. Journal of China Coal Society,2014,39(8):1742-1750.
    [2]
    刘盛东,刘静,岳建华. 中国矿井物探技术发展现状和关键问题[J]. 煤炭学报,2014,39(1):19-25.

    LIU Shengdong,LIU Jing,YUE Jianhua. Development status and key problems of Chinese mining geophysical technology[J]. Journal of China Coal Society,2014,39(1):19-25.
    [3]
    刘树才,刘志新,姜志海. 瞬变电磁法在煤矿采区水文勘探中的应用[J]. 中国矿业大学学报,2005,34(4):414-417.

    LIU Shucai,LIU Zhixin,JIANG Zhihai. Application of TEM in hydrogeological prospecting of mining district[J]. Journal of China University of Mining and Technology,2005,34(4):414-417.
    [4]
    王威,代兵权. 地质雷达在犇溪口隧道超前地质预报中的应用[J]. 武汉工程大学学报,2011,33(12):46-49.

    WANG Wei,DAI Bingquan. Application of ground penetrating radar in Benxikou tunnel geological prediction[J]. Journal of Wuhan Institute of Technology,2011,33(12):46-49.
    [5]
    郭立全,刘盛东. 巷道构造震波超前探测技术及其应用[J]. 煤炭科学技术,2008,36(11):99-101.

    GUO Liquan,LIU Shengdong. Mine seismic prediction technology and application to mine roadway tectonic[J]. Coal Science and Technology,2008,36(11):99-101.
    [6]
    鲁晶津,吴小平. 巷道直流电阻率法超前探测三维数值模拟[J]. 煤田地质与勘探,2013,41(6):83-86.

    LU Jingjin,WU Xiaoping. 3D numerical modeling of tunnel DC resistivity for in-advance detection[J]. Coal Geology & Exploration,2013,41(6):83-86.
    [7]
    张伟杰,郝明锐,杜毅博,等. 基于双频激电法的煤矿巷道超前探测新技术初探[J]. 煤炭科学技术,2010,38(3):73-75.

    ZHANG Weijie,HAO Mingrui,DU Yibo,et al. Discussion on new pilot detection technology of mine roadway based on double frequency induced method[J]. Coal Science and Technology,2010,38(3):73-75.
    [8]
    PANISSOD C,LAJARTHE M,TABBAGH A. Potential fo-cusing:A new multi-electrode array concept,simulation study and field tests in archaeological prospecting[J]. Journal of Applied Geophysics,1997,38(1):1-23.
    [9]
    阮百尧,邓小康,刘海飞,等. 坑道直流电阻率超前聚焦探测新方法研究[J]. 地球物理学报,2009,52(1):289-296.

    RUAN Baiyao,DENG Xiaokang,LIU Haifei,et al. Research on a new method of advanced focus detection with DC resistivity in tunnel[J]. Chinese Journal of Geophysics,2009,52(1):289-296.
    [10]
    张力,阮百尧,吕玉增,等. 坑道全空间直流聚焦超前探测模拟研究[J]. 地球物理学报,2011,54(4):1130-1139.

    ZHANG Li,RUAN Baiyao,LYU Yuzeng,et al. Study of full-space numerical modeling of advanced exploration in tunnel with DC focus resistivity method[J]. Chinese Journal of Geophysics,2011,54(4):1130-1139.
    [11]
    DENG Xiaokang,LIU Jianxin,LIU Haifei,et al. 3D finite element numerical simulation of advanced detection in roadway for DC focus method[J]. Transactions of Nonferrous Metals Society of China,2013,23(7):2187-2193.
    [12]
    Geohydraulik data. Beam presentation[Z/OL]. Kirchvers:Geohydraulik Data Corp.,2004. http://www.geo-exploration-technologies.de/
    [13]
    杨卫国,王立华,王力民. BEAM法地质预报系统在中国TBM施工中应用[J]. 辽宁工程技术大学学报,2006,25(增刊2):161-162.

    YANG Weiguo,WANG Lihua,WANG Limin. Application of geological system based on Beam method TBM construction[J]. Journal of Liaoning Technical University,2006,25(S2):161-162.
    [14]
    朱劲,李天斌,李永林. Beam超前地质预报技术在铜锣山隧道中的应用[J]. 工程地质学报,2007,15(2):258-262.

    ZHU Jin,LI Tianbin,LI Yonglin,et al. Application of an electrical method "Beam" for advanced geological exploration to tunneling in Tongluo mountains for Dian-Lin highway[J]. Journal of Engineering Geology,2007,15(2):258-262.
    [15]
    刘志民,刘希高,张金涛,等. 煤巷超前探测双频交流激电接收机系统设计[J]. 辽宁工程技术大学学报(自然科学版),2015,34(8):968-973.

    LIU Zhimin,LIU Xigao,ZHANG Jintao,et al. Design of dual-frequency alternating current IP receiver system for advanced detection in coal roadway[J]. Journal of Liaoning Technical University(Natural Science),2015,34(8):968-973.
    [16]
    张金涛,吕一鸣,刘志民,等. 聚焦双频激电法超前探水激励信号发送系统设计[J]. 煤炭科学技术,2015,43(8):107-111.

    ZHANG Jintao,LYU Yiming,LIU Zhimin,et al. Design of advanced water detection excitation signal transmission system of focusing double frequency induced polarization method[J]. Coal Science and Technology,2015,43(8):107-111.
    [17]
    刘志民,刘希高,张金涛,等. 交流聚焦激电法煤巷超前探测阻容试验模拟[J]. 煤炭学报,2015,40(9):2144-2151.

    LIU Zhimin,LIU Xigao,ZHANG Jintao,et al. Experimental simulation of resistance-capacitance model for advanced detection in coal roadway based on alternating current focusing induced polarization method[J]. Journal of China Coal Society,2015,40(9):2144-2151.
    [18]
    HE Jishan,LI Daqing,TANG J T. Equivalent circuit of nonlinear effect of spectral IP[J]. Transactions of Nonferrous Metals Society of China,1996,26(3):1-7.
    [19]
    汤井田,戴前伟,柳建新,等. 何继善教授从事地球物理工作60周年学术成就回顾[J]. 中国有色金属学报,2013,23(9):2323-2339.

    TANG Jingtian,DAI Qianwei,LIU Jianxin,et a1. Academic achievements of Professor HE Jishan dedicated to geophysics for six decades[J]. The Chinese Journal of Nonferrous Metals,2013,23(9):2323-2339.
    [20]
    陈伟,易志俊,丁益民. 利用Matlab模拟点电荷系的电场线和等势面[J]. 大学物理实验,2014,27(3):94-96.

    CHEN Wei,YI Zhijun,DING Yimin. Simulation of electric field and equipotential surface of point charge system with matlab[J]. Physical Experiment of College,2014,27(3):94-96.
    [21]
    FEHLBERG E. Low-order classical Runge-Kutta formulas with stepsize control and their application to some heat transfer problems[R]. Washington DC:NASA TR R-315,1969.
  • Related Articles

    [1]TIAN Han, WU Rongxin, HU Ze’an, YANG Qiaonan. Tomography method for adjacent channel frequency shift of transmitted in-Seam waves[J]. COAL GEOLOGY & EXPLORATION, 2022, 50(11): 187-194. DOI: 10.12363/issn.1001-1986.22.04.0221
    [2]HOU Yanwei, YAO Weihua. Constrained inversion method and application effect of TEM data of fixed source loop device[J]. COAL GEOLOGY & EXPLORATION, 2019, 47(4): 172-177. DOI: 10.3969/j.issn.1001-1986.2019.04.026
    [3]LYU Huaxin, CUI Weixiong, FU Zhengqing, GUAN Qi. Tomography technique of relative transmission coefficient of in-seam wave in coal mining face[J]. COAL GEOLOGY & EXPLORATION, 2017, 45(3): 147-150. DOI: 10.3969/j.issn.1001-1986.2017.03.027
    [4]ZHOU Weixi, CHEN Yuhua, YANG Yongguo, LUO Jinhui. 3D modeling and visualization of coal reservoir based on corner-point grid[J]. COAL GEOLOGY & EXPLORATION, 2016, 44(5): 53-57. DOI: 10.3969/j.issn.1001-1986.2016.05.010
    [5]LI Yu, YANG De-yi, YAN Pei. A method of creating quickly an initial model in tomography inversion[J]. COAL GEOLOGY & EXPLORATION, 2009, 37(6): 67-70. DOI: 10.3969/j.issn.1001-1986.2009.06.016
    [6]ZHAO Hai-yan, GONG Wei-li. Characterization on anisotropic fractures of coal and rocks by computed X-ray tomography based on image segmentation[J]. COAL GEOLOGY & EXPLORATION, 2009, 37(6): 14-18. DOI: 10.3969/j.issn.1001-1986.2009.06.004
    [7]LI Yuan, HU Bao-lin, DONG Chang-wei, TANG Li-hua, WANG Hong-zhi, XU De-jin, MENG Bo. Application of logging constrained inversion technology in prediction of magmatic rock distribution in coal mines[J]. COAL GEOLOGY & EXPLORATION, 2009, 37(5): 68-71. DOI: 10.3969/j.issn.1001-1986.2009.05.017
    [8]ZHANG Wei-guo, KUANG Ling-li. Research and application of two-dimensional high density resistivity tomography[J]. COAL GEOLOGY & EXPLORATION, 2008, 36(2): 55-58.
    [9]WANG Qi. The special processing of tomography to field data of tunnels perspective[J]. COAL GEOLOGY & EXPLORATION, 2001, 29(4): 55-57.
    [10]Cheng Jiulong, Yu Shijian, Qiu Wei, Cheng Hongliang, Song Zhenjiang. HIGH ACCURACY COMPUTER TOMOGRAPHY OF ELECTROMAGNETIC WAVE ON WORKING FACES AND ITS APPLICATION[J]. COAL GEOLOGY & EXPLORATION, 1999, 27(4): 62-64.
  • Cited by

    Periodical cited type(11)

    1. 刘春龙,徐青苗,刘丰永,胡芳芳,吴正富,张缘. 顺层岩质边坡稳定性简易解析公式. 公路. 2025(03): 11-18 .
    2. 刘英朴,许锐,李寻昌,任权. 基于微分演化算法的抗滑桩优化模型. 地下水. 2024(04): 136-140 .
    3. 宁永香,崔希民,崔建国. 基于ABC-GRNN组合模型的露天矿边坡变形预测. 煤田地质与勘探. 2023(03): 65-72 . 本站查看
    4. 沈简,陈苏萌. 高边坡施工安全风险评估指标重要性排序研究. 工程建设与设计. 2023(11): 258-260 .
    5. 荆宇涵. 甘肃省清水县王家山滑坡地质灾害特征及稳定性评价. 冶金管理. 2023(13): 95-97 .
    6. 欧阳刚. 滑坡地质灾害勘查与防治浅析. 冶金管理. 2021(09): 65-66 .
    7. 谢明钧,姚院峰,胡致远. 印尼某火电厂A2—A4区边坡防治项目工程实录. 水利与建筑工程学报. 2020(05): 215-220 .
    8. 熊超,赵鹏,武超,刘光华. 岩溶区层状岩质基坑边坡变形机制及治理分析——以天生三桥为例. 科学技术与工程. 2019(29): 260-265 .
    9. 颉保亮,廖志威,石富军,邹平波. 大型金属矿山边坡滑坡的成因及治理措施. 世界有色金属. 2019(19): 143-144 .
    10. 张思远. 江习古高速公路JK64+280~600段滑坡成因机制及治理. 产业与科技论坛. 2018(14): 89-91 .
    11. 肖拥军,王泰,李玉泉. 含软弱夹层库岸复杂滑坡体形成机制. 煤田地质与勘探. 2018(06): 133-137 . 本站查看

    Other cited types(1)

Catalog

    Article Metrics

    Article views (82) PDF downloads (7) Cited by(12)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return