DONG Qianlin, LI Qingyuan, CAO Daiyong, LI Qing, WEI Zhubin, LI Yonghong, CUI Yang. 3D modeling with integration of geological data of multi-sources and geological analysis: A case of Sanlutian explorationg area of Muli, Qinghai[J]. COAL GEOLOGY & EXPLORATION, 2017, 45(3): 37-44. DOI: 10.3969/j.issn.1001-1986.2017.03.007
Citation: DONG Qianlin, LI Qingyuan, CAO Daiyong, LI Qing, WEI Zhubin, LI Yonghong, CUI Yang. 3D modeling with integration of geological data of multi-sources and geological analysis: A case of Sanlutian explorationg area of Muli, Qinghai[J]. COAL GEOLOGY & EXPLORATION, 2017, 45(3): 37-44. DOI: 10.3969/j.issn.1001-1986.2017.03.007

3D modeling with integration of geological data of multi-sources and geological analysis: A case of Sanlutian explorationg area of Muli, Qinghai

Funds: 

National Natural Science Foundation of China(41272367,41572141)

More Information
  • Received Date: May 05, 2016
  • Published Date: June 24, 2017
  • Generally, conventional coal exploration results are shown based on two-dimensional maps, it is very difficult to express three-dimensional spatial distribution in direct and visual way. Based on borehole data, two-dimensional topographic and geologic map, coal seam bottom contour map and geologic exploration section map, this paper reconstructs spatial distribution of ground surface, coal seam, shape of main faults and temperature field. Based on geological data of multi-source, three-dimensional geological modeling results clearly show us coal seam shape features, coal accumulating scope and intensity of each sedimentary cycle, structural outline characteristics and underground temperature field characteristics. The results show that three-dimensional visualization technology with geological data of multi-source vividly reflects the morphological characteristics of coal seam and other geological bodies, it also can effectively analyze the sequence of complex geological faults formed in the geological history and paleotectonic stress field characteristics. Therefore, it is a very effective means using three-dimensional geological modeling for the analysis of the deposition, structure and geological attribute field.
  • [1]
    HOULDING S W. 3D geoscience modeling,computer technique for geological characterization[M]. Berlin:Spring-Verlag,1994.
    [2]
    李青元,董前林,贾会玲. 三维地质建模技术及其在煤田构造中的应用[J]. 中国煤炭地质,2014,26(8):39-44.

    LI Qingyuan,DONG Qianlin,JIA Huiling. 3D geological modeling technology and its application in coalfield structure[J]. Coal Geology of China,2014,26(8):39-44.
    [3]
    明镜. 三维地质建模技术研究[J]. 地理与地理信息科学, 2011,27(4):14-20.

    MING Jing. 3D geological modeling research[J]. Geography and Geographical Information Science,2011,27(4):14-20.
    [4]
    余志伟. 一种新的地质曲面插值计算法-曲面样条函数方法[J]. 中国矿业学院学报,1987,16(4):69-76.

    YU Zhiwei. A new method for interpolating geological surface[J]. Journal of China University of Mining & Technology,1987, 16(4):69-76.
    [5]
    YFANTIS E A. Simulation of geological surfaces using fractals[J]. Mathematical Geology,1988,20(6):667-672.
    [6]
    FISHER T R,WALES R Q. 3D solid modeling of sandstone reservoirs using NURBS[J]. Geobyte,1990,5(1):39-41.
    [7]
    钟登华,李明超. 水利水电工程地质三维建模与分析[M]. 北京:中国水利水电出版社,2005:168.
    [8]
    WU Qiang,XU Hua. An effective method for 3D geological modeling with multi-source data integration[J]. Compouters and Geosciences,2008,34(3):35-43.
    [9]
    武强,徐华. 虚拟矿山系统中三维断层模拟技术[J]. 辽宁工程技术大学学报,2005,24(3):316-319.

    WU Qiang,XU Hua. 3D fault modeling technique in virtual mining system[J]. Journal of Liaoning Engineering Technique University,2005,24(3):316-319.
    [10]
    武强,徐华. 数字矿山中三维地质建模方法与应用[J]. 中国科学(地球科学版),2013,43(12):1996-2006.

    WU Qiang,XU Hua. 3D geological modeling method and application in digital mine[J]. China Science(Earth Edition),2013, 43(12):1996-2006.
    [11]
    吴冲龙,刘刚,田宜平,等. 地质信息科学理论、方法论和技术体系的探讨[C]//中国地质学会数学地质与地学信息专业委员会. 地球资源环境定量化理论与应用-2009全国数学地球科学与地学信息学术会议. 武汉:2009.
    [12]
    毛善君. 灰色地理信息系统——动态修正地质空间数据的理论和技术[J]. 北京大学学报(自然科学版),2002,38(4):556-562.

    MAO Shanjun. Gray geographical information system:The theory and technology of correct geological spatial data dynamically[J]. Acta Scicentiarum Naturalum Universitis Pekinesis, 2002,38(4):556-562.
    [13]
    丁永祥,夏巨湛,王英. 任意多边形的Deluanay三角剖分[J]. 计算机学报,1994,17(4):270-275.

    DING Yongxiang,XIA Juzhan,WAMG Ying. Deluanay triangulation of arbitrary polygon[J]. Journal of Computer Science, 1994,17(4):270-275.
    [14]
    王占刚,潘懋. 三维折剖面的Delaunay三角剖分算法[J]. 计算机工程与应用,2008,44(1):94-96.

    WANG Zhangang,PAN Mao. Delaunay triangulation algorithm of 3D folded cross-section[J]. Comptuter Engineering and Application,2008,44(1):94-96.
    [15]
    杨钦. 限定三角网格剖分技术[M]. 北京:电子工业出版社, 2005:5-6.
    [16]
    沈敬伟,周廷刚. 一种基于四面体格网模型的地质体剖面生成算法[J]. 西南大学学报,2014,36(8):123-129.

    SHEN Jingwei,ZHOU Tinggang. Geological profile generation algorithm based on tetrahedron grid model[J]. Journal of Southwest University,2014,36(8):123-129.
    [17]
    苏幸,黄临平,林孝成,等. 基于四面体格网的三维地质体建模算法[J]. 煤田地质与勘探,2008,36(1):5-9.

    SU Xing,HUANG Linping,LIN Xiaocheng,et al. 3D geology body modeling algorithm based on tetrahedron grid[J]. Coal Geology & Exploration,2008,36(1):5-9.
    [18]
    宋献锋,徐方舟. 地层产状及高程约束条件下煤层底板高程曲面的最佳拟合[J]. 煤炭学报,2010,35(5):782-786.

    SONG Xianfeng,XU Fangzhou. Coal seam bottom surface best fitting under stratum attitude and elevation[J]. Journal of China Coal Society,2010,35(5):782-786.
    [19]
    祝有海,张永勤,文怀军,等. 祁连山冻土区天然气水合物及其基本特征[J]. 地球学报,2010,31(1):7-16.

    ZHU Youhai,ZHANG Yongqin,WEN Huaijun,et al. Gas hydrates basic characteristics in Qilian moutain frozen earth[J]. Journal of Earth Science,2010,31(1):7-16.
    [20]
    曹代勇,刘天绩,王丹,等. 青海木里地区天然气水合物形成条件分析[J]. 中国煤炭地质,2009,21(9):3-6.

    CAO Daiyong,LIU Tianji,WANG Dan. Gas hydrates formation condition analysis in Muli of Qinghai[J]. Coal Geology of China,2009,21(9):3-6.
  • Related Articles

    [1]SHAO Zhenlu, ZHANG Huisong, DENG Rong, YANG Tong, MA Dong. 3D reconstruction of surface temperature field in spontaneous combustion coal gangue dump fire area and its practice[J]. COAL GEOLOGY & EXPLORATION, 2024, 52(11): 12-23. DOI: 10.12363/issn.1001-1986.24.03.0190
    [2]LI Huakun, ZHENG Liugen, CHEN Yongchun, LI Bing, TAO Pengfei, LI Hao. Exploring the pore structure of reconstructed soils and its effects on water and salt transport based on CT scanning[J]. COAL GEOLOGY & EXPLORATION, 2024, 52(4): 120-127. DOI: 10.12363/issn.1001-1986.23.09.0586
    [3]XI Zhaodong, TANG Shuheng, LIU Zhong, QU Xiaorong, ZHANG Pengbao, SU Yufei, ZHANG Qian. Deep coal reservoirs in the Ningwu Basin: Geothermal field characteristics and their effects on gas-bearing properties[J]. COAL GEOLOGY & EXPLORATION, 2024, 52(2): 92-101. DOI: 10.12363/issn.1001-1986.23.07.0408
    [4]JIA Zilong, ZHENG Jia, ZHANG Yaobin, CHEN Ke, LIU Aihua, LI Juan. Heating experiments of a solar-assisted heat pump and thermal equilibrium simulations of geothermal fields[J]. COAL GEOLOGY & EXPLORATION, 2024, 52(1): 159-167. DOI: 10.12363/issn.1001-1986.23.07.0395
    [5]TANG Boning, QIU Nansheng, ZHU Chuanqing, CHANG Jian, LI Xiao, HUANG Yue, YANG Junsheng, FU Xiuli. Thermal conductivity column of rocks and distribution characteristics of paleo-geothermal field in the Songliao Basin[J]. COAL GEOLOGY & EXPLORATION, 2024, 52(1): 26-35. DOI: 10.12363/issn.1001-1986.23.11.0721
    [6]TANG Yang, XIE Na, XIONG Haoyu, HE Yin, HUANG Shunxiao. Thermal stress field of high-temperature spray wellbore for underground coal gasification[J]. COAL GEOLOGY & EXPLORATION.
    [7]FANG Huihuang, SANG Shuxun, LIU Shiqi, WANG He, ZANG Liyuan. Study of digital petrophysical analysis method based on micro-focus X-ray tomography: A case study from No.3 coal seam of Bofang mining area in southern Qinshui basin[J]. COAL GEOLOGY & EXPLORATION, 2018, 46(5): 167-174,181. DOI: 10.3969/j.issn.1001-1986.2018.05.026
    [8]XU Shengping, PENG Tao, WU Jiwen, ZHANG Haichao, REN Ziqiang. The characteristics of rock thermal conductivity of coal measure strata and their influence on geothermal field in Huainan-Huaibei coalfield[J]. COAL GEOLOGY & EXPLORATION, 2014, 42(6): 76-81. DOI: 10.3969/j.issn.1001-1986.2014.06.016
    [9]Wang Bingshan, Wang Chuangang. RELATIONSHIP BETWEEN LATE PALEOZOIC GEOTHERMAL FIELD OF COAL METAMORPHISM AND CONSERVATION CONDITIONS OF COALBED GAS IN CHINA[J]. COAL GEOLOGY & EXPLORATION, 2000, 28(4): 27-30.
    [10]Song Shiming, Wang Shengzu, Lei Chongli. THE DIGITAL SIMULATION OF THE ROCK TEMPERATURE IN COAL-FIELD[J]. COAL GEOLOGY & EXPLORATION, 1992, 20(6): 43-46.
  • Cited by

    Periodical cited type(11)

    1. 陶占盛,吉耘君,许超. 煤层气开发L型井水平井排采工程的研究. 中国煤层气. 2024(01): 12-16 .
    2. 拜阳. 武乡南区块深部煤层气储层特征及试采地质影响因素分析. 煤炭技术. 2024(09): 97-102 .
    3. 高玉巧,李鑫,何希鹏,陈贞龙,陈刚. 延川南深部煤层气高产主控地质因素研究. 煤田地质与勘探. 2021(02): 21-27 . 本站查看
    4. 郭涛. 贵州省织金区块岩脚向斜煤层气富集高产规律研究. 煤田地质与勘探. 2021(02): 62-69 . 本站查看
    5. 赵景辉,高玉巧,陈贞龙,郭涛,高小康. 鄂尔多斯盆地延川南区块深部地应力状态及其对煤层气开发效果的影响. 中国地质. 2021(03): 785-793 .
    6. 闫霞,徐凤银,聂志宏,康永尚. 深部微构造特征及其对煤层气高产“甜点区”的控制——以鄂尔多斯盆地东缘大吉地区为例. 煤炭学报. 2021(08): 2426-2439 .
    7. 王晴,杨飞,龚伟成,徐天鑫,李一超. 煤层气储层动态渗透率影响因素及排采管控措施. 煤田地质与勘探. 2020(02): 114-119 . 本站查看
    8. 周亚彤. 延川南煤层气田动态特征和SEC动态储量评估方法研究. 油气藏评价与开发. 2020(04): 53-58 .
    9. 郑欢,许晓宏,王则,胡佳杰,雷琳,林燕. 延川南区块煤层气储层垂向非均质性特征及意义. 新疆地质. 2019(04): 555-559 .
    10. 原俊红,曹丽文,付玉通. 延川南地区深部煤层气U型水平井压裂参数优化设计. 煤田地质与勘探. 2018(05): 175-181 . 本站查看
    11. 刘培勇. 基于文献大数据的我国煤层气研究现状与热点分析. 中国煤炭地质. 2018(11): 34-40 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (146) PDF downloads (24) Cited by(13)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return