JIA Zilong,ZHENG Jia,ZHANG Yaobin,et al. Heating experiments of a solar-assisted heat pump and thermal equilibrium simulations of geothermal fields[J]. Coal Geology & Exploration,2024,52(1):159−167. DOI: 10.12363/issn.1001-1986.23.07.0395
Citation: JIA Zilong,ZHENG Jia,ZHANG Yaobin,et al. Heating experiments of a solar-assisted heat pump and thermal equilibrium simulations of geothermal fields[J]. Coal Geology & Exploration,2024,52(1):159−167. DOI: 10.12363/issn.1001-1986.23.07.0395

Heating experiments of a solar-assisted heat pump and thermal equilibrium simulations of geothermal fields

More Information
  • Received Date: July 05, 2023
  • Revised Date: December 04, 2023
  • Available Online: January 11, 2024
  • This study aims to explore technologies required for clean energy heating by means of multi-energy complementation, with the purpose of meeting the demand for clean heating in decentralized buildings in Beijing's villages and towns. To this end, this study built a solar-ground source heat pump (SGHP) compound system in a rural area of Beijing. Then, it carried out heating experiments of the solar-assisted heat pump system and thermal equilibrium simulations of geothermal fields using the COMSOL software. The results are as follows: (1) Compared to a single SGHP system, the solar-assisted heat pump scheme increased the outlet water temperature on the ground source side by 23% and increased the coefficients of performance (COP) of the heat pump system and units by 19% and 25%, respectively. (2) After ten years of operation of the system, the scheme of a single season operation using a single SGHP system exhibited a total extracted heat higher than the natural recovery in the intermittent period, with a total balance in the geothermal field of −8.91×109 kJ. (3) The schemes of two-season operation using a single SGHP and a solar-assisted heat pump individually yielded total extracted heat less than that the total discharged heat, with total balances in geothermal fields of 4.220×109 kJ and 1.084×1010 kJ, respectively. Therefore, the dual-season schemes will not produce a negative heat balance to the geothermal field but a certain heat supplement instead. Supplementing solar energy to the SGHP system during its operation exerts a smaller impact on the geothermal field and can significantly improve the efficiency of the heating pump system and units. This mode is suitable for rural areas in Beijing, especially for buildings with high heating demand.

  • [1]
    徐伟. 《中国地源热泵发展研究报告》(摘选):国际国内地源热泵技术发展[J]. 建设科技,2010,18(11):14−18.

    XU Wei. China Ground Source Heat Pump Development Research Report (Selected):Domestic and international ground source heat pump technology development[J]. Construction Science and Technology,2010,18(11):14−18.
    [2]
    贾胜辉,曹亚丽. 地埋管地源热泵发展中的关键问题[J]. 建筑节能,2013,41(10):11−12.

    JIA Shenghui,CAO Yali. Crucial issues on development ground–coupled heat pump system[J]. Building Energy Efficiency,2013,41(10):11−12.
    [3]
    江亿. 我国建筑耗能状况及有效的节能途径[J]. 暖通空调,2005,35(5):30−40.

    JIANG Yi. Current building energy consumption in China and effective energy efficiency measures[J]. Heating Ventilating & Air Conditioning,2005,35(5):30−40.
    [4]
    王恩宇,李想,王孟,等. 太阳能辅助地源热泵系统运行策略研究[J]. 可再生能源,2017,35(7):998−1006.

    WANG Enyu,LI Xiang,WANG Meng,et al. Research on operation strategy of solar assisted ground source heat pump system[J]. Renewable Energy Resources,2017,35(7):998−1006.
    [5]
    崔云翔,蔡颖玲. 上海地区太阳能–地源热泵冬季联合运行试验研究[J]. 流体机械,2019,47(2):65−69.

    CUI Yunxiang,CAI Yingling. Experimental study on joint operation characteristics of solar–ground source heat pump system in Shanghai[J]. Fluid Machinery,2019,47(2):65−69.
    [6]
    郑煜鑫,张亮亮,白雪,等. 太阳能–地源热泵复合系统的性能分析及优化[J]. 太阳能,2023(2):65−73.

    ZHENG Yuxin,ZHANG Liangliang,BAI Xue,et al. Performance analysis and optimization of solar–ground–source heat pump composite system[J]. Solar Energy,2023(2):65−73.
    [7]
    金光,张宏葛,郭少朋,等. 内蒙古地区太阳能–地源热泵系统运行特性研究[J]. 西安建筑科技大学学报(自然科学版),2019,51(5):751−756.

    JIN Guang,ZHANG Hongge,GUO Shaopeng,et al. Study on the operation characteristics of solar energy–ground source heat pump system in Inner Mongolia[J]. Journal of Xi’an University of Architecture & Technology (Natural Science Edition),2019,51(5):751−756.
    [8]
    杨启岳. 国内太阳能热利用现状与发展[J]. 能源技术,2001,22(4):162−164.

    YANG Qiyue. Current status and development of solar thermal conversion in China[J]. Energy Technology,2001,22(4):162−164.
    [9]
    卢子阳,杜传梅,樊明娟,等. 地源热泵:太阳能复合系统[J]. 中国科技信息,2020(6):73.

    LU Ziyang,DU Chuanmei,FAN Mingjuan,et al. Ground source heat pump–solar composite system[J]. China Science and Technology Information,2020(6):73.
    [10]
    张荣,张勇,刘凯,等. 西北地区太阳能–地源热泵复合供热系统应用分析[J]. 能源与节能,2020(9):53−56.

    ZHANG Rong,ZHANG Yong,LIU Kai,et al. Application analysis of solar–ground source heat pump composite heating system in northwest China[J]. Energy and Energy Conservation,2020(9):53−56.
    [11]
    EMMI G,ZARRELLA A,CARLI M D,et al. Solar assisted ground source heat pump in cold climates[J]. Energy Procedia,2015,82:623−629. DOI: 10.1016/j.egypro.2015.12.010
    [12]
    VERMA V,MURUGESAN K. Experimental study of solar energy storage and space heating using solar assisted ground source heat pump system for Indian climatic conditions[J]. Energy & Buildings,2017,139:569−577.
    [13]
    金光,陈仁磊,郭少朋,等. 严寒地区太阳能跨季蓄热热泵供暖性能实验研究[J]. 建筑科学,2019,35(12):33−37.

    JIN Guang,CHEN Renlei,GUO Shaopeng,et al. Experimental study on heat pump heating performance of solar energy cross–season heat storage in severe cold areas[J]. Building Science,2019,35(12):33−37.
    [14]
    吴晅,路子业,刘卫,等. 跨季节蓄热型地源热泵热传递规律研究[J]. 水文地质工程地质,2017,44(5):164−171.

    WU Xuan,LU Ziye,LIU Wei,et al. A study of the heat transfer law of ground source heat pump with seasonal heat storage[J]. Hydrogeology & Engineering Geology,2017,44(5):164−171.
    [15]
    王立发,董殿伟,江剑,等. 北京市浅层地热能资源评价及开发利用前景分析[C]//中国地热能:成就与展望:李四光倡导中国地热能开发利用40周年纪念大会暨中国地热发展研讨会论文集. 国土资源部地质环境司,北京市地质工程勘察院,中国地质调查局浅层地温能研究与推广中心,2010:137–145.
    [16]
    高慧丽,段金平. 北京平原区浅层地热能资源潜力巨大[N]. 中国国土资源报,2009-05-20(005).
    [17]
    曾宪斌,李娟. 地源热泵的地域特性及热平衡问题[J]. 能源技术,2007,28(6):347−349.

    ZENG Xianbin,LI Juan. The zone characteristic for application GSHP and problems of thermal equation[J]. Energy Technology,2007,28(6):347−349.
    [18]
    丁兆磊. 太阳能–地源热泵复合系统的模拟优化[D]. 济南:山东建筑大学,2013.

    DING Zhaolei. Simulation and optimization of solar energy–ground source heat pump combined system[D]. Jinan:Shandong Jianzhu University,2013.
    [19]
    MIGLANI S,OREHOUNIG K,CARMELIET J. Integrating a thermal model of ground source heat pumps and solar regeneration within building energy system optimization[J]. Applied Energy,2018,218(2018):78–94.
    [20]
    KEGEL M,WONG S,TAMASAUSKAS J,et al. Energy end–use and grid interaction analysis of solar assisted ground source heat pumps in northern Canada[J]. Energy Procedia,2016,91:467−476. DOI: 10.1016/j.egypro.2016.06.180
    [21]
    路伟. 岩土竖直温度梯度对地埋管换热器性能的影响[J]. 煤气与热力,2020,40(10):23−27.

    LU Wei. Impact of vertical temperature gradient of rock and soil on the performance of buried tube heat exchanger[J]. Gas and Heat,2020,40(10):23−27.
    [22]
    曲伸,齐子姝,郭磊. 地源热泵地埋管换热量影响因素研究[J]. 吉林建筑大学学报,2020,37(5):49−55.

    QU Shen,QI Zishu,GUO Lei. Research on the factors affecting the heat exchange capacity of ground–source heat pump buried pipes[J]. Journal of Jilin Jianzhu University,2020,37(5):49−55.
    [23]
    王畅,曹晓玲,袁艳平,等. 夏季间歇运行工况下相变温度对相变回填地埋管换热器传热性能的影响[J]. 太阳能学报,2020,41(3):234−241.

    WANG Chang,CAO Xiaoling,YUAN Yanping,et al. The influence of phase change temperature on the heat transfer performance of phase change backfilling ground–coupled heat exchangers under intermittent operation conditions in summer[J]. Acta Energiae Solaris Sinica,2020,41(3):234−241.
    [24]
    饶松,肖红平,王朱亭,等. 渤海湾盆地馆陶组热储特征与地热资源评价[J]. 天然气工业,2023,43(5):141−152.

    RAO Song,XIAO Hongping,WANG Zhuting,et al. Thermal reservoir characteristics and geothermal resource evaluation of Guantao Formation in Bohai Bay Basin[J]. Natural Gas Industry,2023,43(5):141−152.
    [25]
    韩中阳,吴沙沙,刘咏明,等. 济南市北部地热田地热资源量计算与评价[J]. 华东地质,2022,43(3):276−285.

    HAN Zhongyang,WU Shasha,LIU Yongming,et al. Calculation and evaluation of geothermal resources in the northern geothermal field of Jinan City[J]. East China Geology,2022,43(3):276−285.
    [26]
    刘爱华,郑佳,李娟,等. 浅层地温能和地热资源评价方法对比[J]. 城市地质,2018,13(2):37−41.

    LIU Aihua,ZHENG Jia,LI Juan,et al. Comparison study on resource evaluation methods of shallow geothermal energy and traditional geothermal energy[J]. Urban Geology,2018,13(2):37−41.
  • Cited by

    Periodical cited type(25)

    1. 王博睿,张远航. 含隐伏断层底板原生缺陷致灾前兆研究. 煤炭技术. 2025(01): 216-220 .
    2. 张雪莲. 潞安矿区矿井水害及防治措施分析. 华北自然资源. 2025(01): 14-16+20 .
    3. 连会青,晏涛,尹尚先,徐斌,康佳,周旺,闫国成. 基于透明水文地质模型的工作面顶板水害预警研究. 煤炭科学技术. 2025(01): 259-271 .
    4. 牛亚豪,王畅,刘佳佳. 基于高精度差分定位法的水文测量自动化报警系统设计. 自动化与仪器仪表. 2024(01): 231-234 .
    5. 苏雄,李小龙,贺杰伟. 基于三维GIS的煤矿数据集成自动化监测系统. 自动化与仪表. 2024(03): 121-125 .
    6. 郝宪杰,李航,赵毅鑫,杨怀翔,杨波,刘科峰,李宜家. 基于日累积微震指标与水位关联效应的底板突水预警方法与应用. 岩石力学与工程学报. 2024(09): 2125-2139 .
    7. 曾一凡,于超,武强,赵菱尔,尹尚先,张博成,刘泽洋,崔雅帅,阚雪冬,黄浩. 煤矿防治水“三区”划分方法及其水害防治意义. 煤炭学报. 2024(08): 3605-3618 .
    8. 宗伟琴. 煤矿水害监测预警GIS平台研发及应用. 能源科技. 2024(05): 28-33 .
    9. 姚有利,寇杰,张孟浩. 基于博弈论组合赋权-TOPSIS的煤矿“一通三防”风险评估. 矿业安全与环保. 2024(06): 71-78 .
    10. 赵群,郝韶嵩. 水害风险预警系统在皖北煤电集团的设计研究. 煤炭与化工. 2023(02): 33-37 .
    11. 丁莹莹,卜昌森,连会青,尹尚先,徐斌,张丐卓,姚辉,董其金. 基于仿真平台的矿井突水淹没路径和逃生路径规划. 煤矿安全. 2023(05): 20-26 .
    12. 董书宁. 人工智能技术在煤矿水害防治智能化发展中的应用. 煤矿安全. 2023(05): 1-12 .
    13. 袁利伟,龙皓楠,李斌,李延林,曹浪,辛岩. 基于HMM算法的矿山水灾害链复杂演化网络模型构建及应用. 化工矿物与加工. 2023(08): 47-55 .
    14. 曾一凡,武强,赵苏启,苗耀武,张晔,梅傲霜,孟世豪,刘晓秀. 我国煤矿水害事故特征、致因与防治对策. 煤炭科学技术. 2023(07): 1-14 .
    15. 尹尚先,徐斌,尹慧超,曹敏,丁莹莹,梁满玉. 矿井水防治学科基本架构及内涵. 煤炭科学技术. 2023(07): 24-35 .
    16. 邱浩,李宏杰,李文,李江华,杜明泽,姜鹏. 煤矿水害智能预警系统关键架构及模型研究. 煤炭科学技术. 2023(07): 197-206 .
    17. 李鑫,孙亚军,徐智敏,陈歌. 矿山采动突水危险源划分与致灾危险性评价研究. 煤炭工程. 2023(09): 108-115 .
    18. 张党育,武斌,贾靖,赵立松,李玉宝. 基于微震数据及模型的煤矿水害“双驱动”预警体系构建与应用. 煤炭科学技术. 2023(S1): 242-255 .
    19. 张志武. 高密度电阻率法在承压水导升高度探测中的应用. 煤. 2022(06): 71-72+95 .
    20. 宋容. 基于多层关联规则算法的煤矿突出预警模型. 能源与环保. 2022(06): 300-305 .
    21. 许进鹏,周宇,浦早红,庞思远. 离层积水量估算方法及离层突水预测——以陕西招贤煤矿1304工作面突水为例. 煤炭学报. 2022(08): 3083-3090 .
    22. 张辰宇. 基于5G通信技术的矿井开采工作面环境监测系统. 能源与环保. 2022(11): 220-225 .
    23. 卓聪志. 首采区域内上覆含水层的富水特征及采区涌水量计算. 山西化工. 2022(07): 112-114 .
    24. 隋旺华. 矿山安全地质学:综述. 工程地质学报. 2021(04): 901-916 .
    25. 薛峰峰. 低位岩巷穿层探放技术在采空区水害治理中的应用. 陕西煤炭. 2021(05): 155-158 .

    Other cited types(9)

Catalog

    Article Metrics

    Article views (181) PDF downloads (35) Cited by(34)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return