XUE Liangxi, SHEN Yulin, GU Jiaoyang, ZHENG Jun, ZHANG Chunliang. Characteristic and geological significance of trace elements in mudstone of Upper Carboniferous-Lower Permian in Linxing area[J]. COAL GEOLOGY & EXPLORATION, 2017, 45(3): 18-24,31. DOI: 10.3969/j.issn.1001-1986.2017.03.004
Citation: XUE Liangxi, SHEN Yulin, GU Jiaoyang, ZHENG Jun, ZHANG Chunliang. Characteristic and geological significance of trace elements in mudstone of Upper Carboniferous-Lower Permian in Linxing area[J]. COAL GEOLOGY & EXPLORATION, 2017, 45(3): 18-24,31. DOI: 10.3969/j.issn.1001-1986.2017.03.004

Characteristic and geological significance of trace elements in mudstone of Upper Carboniferous-Lower Permian in Linxing area

Funds: 

National Natural Science Foundation of China(41672146, 41541046)

More Information
  • Received Date: March 01, 2016
  • Published Date: June 24, 2017
  • Trace elements of 18 mudstone samples of Linxing area in the eastern margin of Ordos basin were analyzed using ICP-MS and ICP-AES to study geochemical characteristics and the geological application of trace elements. The results show that compared with elements' average content of the crust clay rock, some trace elements such as Li, Sc, Nb and Th are relative enriched, depleted elements such as Sr, Rb, Ba and Cs are almost in line with them such as Be, Co, Zn and Mo; based on statistics software "Q" cluster analysis, the combinating characteristics of trace elements coincide with sedimentary facies division when the clustering distances are 25 and 11; Th/Sc, Th/U-Th, K2O-Rb and multielements provenance discrimination diagram show that sediment source from upper crust mostly consist of felsic material and cyclic sedimentation, mixed with few neutral and basic material. In addition, the direction of source is the north of Linxing area according to the changing sand-bearing ratios and the distribution characteristic of the heavy mineral combination; the element migration and enrichment which were indicated by Sr/Cu, Sr, Ti and P reflected that the climate from Late Carboniferous to Early Permian was relatively wet, changing from warm-humid to dry-heat.
  • [1]
    TAYLOR S R,MCLENNAN S M. The continental crust:It's composition and evolution[M]. Oxford,London:Blackwell Scientific Publication,1985:277.
    [2]
    刘英俊,曹励名. 元素地球化学导论[M]. 北京:地质出版社, 1987:1-9.
    [3]
    邓宏文,钱凯. 沉积地球化学与环境分析[M]. 兰州:甘肃科学技术出版社,1993:95-104.
    [4]
    杨守业,李从先. REE示踪沉积物物源研究进展[J]. 地球科学进展,1999,14(2):63-66.

    YANG Shouye,LI Congxian. Research progress in REE tracer for sediment source[J]. Advance in Earth Science,1999,14(2):63-66.
    [5]
    彭立才,韩德馨,周家驹. 柴达木冷科1井不同沉积环境元素地球化学特征[J]. 煤田地质与勘探,2001,29(6):1-3.

    PENG Licai,HAN Dexin,ZHOU Jiaju. Element geochemistry characteristics of different sedimentary environments of Lengke No.1, Chaidamu basin[J]. Coal Geology & Exploration,2001, 29(6):1-3.
    [6]
    毛光周,刘池洋. 地球化学在物源及沉积背景分析中的应用[J]. 地球科学与环境学报,2011,33(4):337-348.

    MAO Guangzhou,LIU Chiyang. Application of geochemistry in provenance and depositional setting analysis[J]. Journal of Earth Sciences and Environment,2011,33(4):337-348.
    [7]
    杨仁超,李进步,樊爱萍,等. 陆源沉积岩物源分析研究进展与发展趋势[J]. 沉积学报,2013,31(1):99-107.

    YANG Renchao,LI Jinbu,FAN Aiping,et al. Research progress and development tendency of provenance analysis on terrigenous sedimentary rocks[J]. Acta Sedimentologica Sinica,2013,31(1):99-107.
    [8]
    操应长,王艳忠,徐涛玉,等. 特征元素比值在沉积物物源分析中的应用-以东营凹陷王58井区沙四上亚段研究为例[J]. 沉积学报,2007,25(2):230-238.

    CAO Yingchang,WANG Yanzhong,XU Taoyu,et al. Application of the ratio of characteristic elements in provenance analysis:A case study from the upper part of the Fourth Member of Shahejie Formation in the W58 area,Dongying depression[J]. Acta Sedimentologica Sinica,2007,25(2):230-238.
    [9]
    宋明水. 东营凹陷南斜坡沙四段沉积环境的地球化学特征[J]. 矿物岩石,2005,25(1):67-73.

    SONG Mingshui. Sedimentary environment geochemistry in the Shasi Section of southern ramp,Dongying depression[J]. Journal of Mineralogy and Petrology,2005,25(1):67-73.
    [10]
    彭雪峰,汪立今,姜丽萍. 准噶尔盆地东南缘芦草沟组油页岩元素地球化学特征及沉积环境指示意义[J]. 矿物岩石地球化学通报,2012,31(2):121-127.

    PENG Xuefeng,WANG Lijin,JIANG Liping. Geochemical characteristics of the Lucaogou Formation oil shale in the southeastern margin of the Junggar basin and its environmental implications[J]. Bulletin of Mineralogy,Petrology and Geochemistry, 2012,31(2):121-127.
    [11]
    郭本广,许浩,孟尚志,等. 临兴地区非常规天然气合探共采地质条件分析[J]. 中国煤层气,2012,9(4):3-6.

    GUO Benguang,XU Hao,MENG Shangzhi,et al. Geology condition analysis for unconventional gas co-exploration and concurrent production in Linxing area[J]. China Coalbed Methane,2012,9(4):3-6.
    [12]
    吴浩,郭英海. 兴县地区山西组三角洲沉积及聚煤作用[J]. 岩石矿物学杂志,2013,32(3):355-365.

    WU Hao,GUO Yinghai. Sedimentary and coal-accumulating processes of the delta of the Lower Permian Shanxi Formation in Xingxian area[J]. Acta Petrologica et Mineralogica,2013,32(3):355-365.
    [13]
    郭晓明. 山西兴县地区太原组沉积环境及聚煤规律[J]. 能源与节能,2015(4):104-107.

    GUO Xiaoming. Depositional environment and coal-forming law of Taiyuan Formation in Xingxian area in Shanxi[J]. Energy and Energy Conservation,2015(4):104-107.
    [14]
    赵俊斌,唐书恒,孙振飞,等. 鄂尔多斯盆地东缘兴县地区山西组高分辨率层序地层与聚煤规律[J]. 中国煤炭地质,2015, 27(4):1-7.

    ZHAO Junbin,TANG Shuheng,SUN Zhenfei,et al. Shanxi Formation high-resolution sequence stratigraphy and coal accumulation pattern in Xingxian area,Ordos basin eastern margin[J]. Coal Geology of China,2015,27(4):1-7.
    [15]
    陈刚,丁超,徐黎明,等. 鄂尔多斯盆地东缘紫金山侵入岩热演化史与隆升过程分析[J]. 地球物理学报,2012,55(11):3731-3740.

    CHEN Gang,DING Chao,XU Liming,et al. Analysis on the thermal history and uplift process of Zijinshan intrusive complex in the eastern Ordos basin[J]. Chinese Journal of Geophysics, 2012,55(11):3731-3740.
    [16]
    樊太亮,郭齐军,吴贤顺. 鄂尔多斯盆地北部上古生界层序地层特征与储层发育规律[J]. 现代地质,1999,13(1):32-36.

    FAN Tailiang,GUO Qijun,WU Xianshun. Features of sequence stratigraphy and distribution regularities of reservoir in Upper Paleozoic of north Ordos basin[J]. Geoscience,1999, 13(1):32-36.
    [17]
    郭英海,刘焕杰,权彪,等. 鄂尔多斯地区晚古生代沉积体系及古地理演化[J]. 沉积学报,1998,16(3):44-51.

    GUO Yinghai,LIU Huanjie,QUAN Biao,et al. Late Paleozoic sedimentary system and paleogeographic evolution of Ordos area[J]. Acta Sedimentologica Sinica,1998,16(3):44-51.
    [18]
    沈玉林. 鄂尔多斯中东部晚古生代古地理及高效储层控制因素研究[D]. 徐州:中国矿业大学,2009:69-88.
    [19]
    迟清华,鄢明才. 应用地球化学元素丰度数据手册[M]. 北京:地质出版社,2007:1-45.
    [20]
    郑荣才,柳梅青. 鄂尔多斯盆地长6油层组古盐度研究[J]. 石油与天然气地质,1999,20(1):22-27.

    ZHENG Rongcai,LIU Meiqing. Study on paleosalinity of Chang 6 oil reservoir set in Ordos basin[J]. Oil & Gas Geology,1999, 20(1):22-27.
    [21]
    文华国,郑荣才,唐飞,等. 鄂尔多斯盆地耿湾地区长6段古盐度恢复与古环境分析[J]. 矿物岩石,2008,28(1):114-120.

    WEN Huaguo,ZHENG Rongcai,TANG Fei,et al. Reconstruction and analysis of paleosalanity and paleoenvironment of the Change 6 Member in the Gengwan region,Ordos basin[J]. Journal of Mineralogy and Petrology,2008,28(1):114-120.
    [22]
    陈洪德,李洁,张成弓,等. 鄂尔多斯盆地山西组沉积环境讨论及其地质启示[J]. 岩石学报,2011,27(8):2213-2229.

    CHEN Hongde,LI Jie,ZHANG Chenggong,et al. Discussion of sedimentary environment and its geological enlightenment of Shanxi Formation in Ordos basin[J]. Acta Petrologica Sinica, 2011,27(8):2213-2229.
    [23]
    BHATIA M R,TAYLOR S R. Trace-element geochemistry and sedimentary provinces:A study from the Tasman geosyncline, Australia[J]. Chemical Geology,1981,33(1/2):115-125.
    [24]
    张英利,王宗起,闫臻,等. 库鲁克塔格地区新元古代贝义西组的构造环境:来自碎屑岩地球化学的证据[J]. 岩石学报, 2011,27(6):1785-1796.

    ZHANG Yingli,WANG Zongqi,YAN Zhen,et al. Tectonic setting of Neoproterozoic Beiyixi Formation in Quruqtagh area, Xinjiang:Evidence from geochemistry of clasticrocks[J]. Acta Petrologica Sinica,2011,27(6):1785-1796.
    [25]
    SHAW D M. A review of K-Rb fractionation trends by covariance analysis[J]. Geochimica et Cosmochimica Acta,1968, 32(6):573-602.
    [26]
    FLOYD P A,WINCHESTER J A,PARK R G. Geochemistry and tectonic setting of Lewisian clastic metasediments from the Early Proterozoic loch Maree Group of Gairloch,NW Scotland[J]. Precambrian Research,1989,45(1/3):203-214.
    [27]
    LACASSIE J P,ROSER B,RUIZDELSOLAR J,et al. Discovering geochemical patterns using self-organizing neural networks:A new perspective for sedimentary povenance analysis[J]. Sedimentary Geology,2004,165:175-191.
    [28]
    韩作振,高丽华,杨仁超,等. 辽河坳陷东部凹陷古近系重矿物分布规律及其指示意义[J]. 矿物岩石,2010,30(3):59-68.

    HAN Zuozhen,GAO Lihua,YANG Renchao,et al. Distribution of heavy mineral and its implication to paleogeography environment of palaeogenein the eastern sag of Liaohe basin[J]. Journal of Mineralogy and Petrology,2010,30(3):59-68.
    [29]
    刘刚,周东升. 微量元素分析在判别沉积环境中的应用-以江汉盆地潜江组为例[J]. 石油实验地质, 2007,29(3):307-314.

    LIU Gang,ZHOU Dongsheng. Application of microelements analysis in identifying sedimentary environment-taking Qianjiang Formation in the Jianghan basin as an example[J]. Petroleum Geology & Experiment,2007,29(3):307-314.
    [30]
    熊小辉,肖加飞. 沉积环境的地球化学示踪[J]. 地球环境, 2011,39(3):405-414.

    XIONG Xiaohui, XIAO Jiafei. Geochemical indicators of sedimentary environments:A summary[J]. Earth and Environment,2011,39(3):405-414.
  • Related Articles

    [1]TIAN Han, WU Rongxin, HU Ze’an, YANG Qiaonan. Tomography method for adjacent channel frequency shift of transmitted in-Seam waves[J]. COAL GEOLOGY & EXPLORATION, 2022, 50(11): 187-194. DOI: 10.12363/issn.1001-1986.22.04.0221
    [2]HOU Yanwei, YAO Weihua. Constrained inversion method and application effect of TEM data of fixed source loop device[J]. COAL GEOLOGY & EXPLORATION, 2019, 47(4): 172-177. DOI: 10.3969/j.issn.1001-1986.2019.04.026
    [3]LYU Huaxin, CUI Weixiong, FU Zhengqing, GUAN Qi. Tomography technique of relative transmission coefficient of in-seam wave in coal mining face[J]. COAL GEOLOGY & EXPLORATION, 2017, 45(3): 147-150. DOI: 10.3969/j.issn.1001-1986.2017.03.027
    [4]ZHOU Weixi, CHEN Yuhua, YANG Yongguo, LUO Jinhui. 3D modeling and visualization of coal reservoir based on corner-point grid[J]. COAL GEOLOGY & EXPLORATION, 2016, 44(5): 53-57. DOI: 10.3969/j.issn.1001-1986.2016.05.010
    [5]LI Yu, YANG De-yi, YAN Pei. A method of creating quickly an initial model in tomography inversion[J]. COAL GEOLOGY & EXPLORATION, 2009, 37(6): 67-70. DOI: 10.3969/j.issn.1001-1986.2009.06.016
    [6]ZHAO Hai-yan, GONG Wei-li. Characterization on anisotropic fractures of coal and rocks by computed X-ray tomography based on image segmentation[J]. COAL GEOLOGY & EXPLORATION, 2009, 37(6): 14-18. DOI: 10.3969/j.issn.1001-1986.2009.06.004
    [7]LI Yuan, HU Bao-lin, DONG Chang-wei, TANG Li-hua, WANG Hong-zhi, XU De-jin, MENG Bo. Application of logging constrained inversion technology in prediction of magmatic rock distribution in coal mines[J]. COAL GEOLOGY & EXPLORATION, 2009, 37(5): 68-71. DOI: 10.3969/j.issn.1001-1986.2009.05.017
    [8]ZHANG Wei-guo, KUANG Ling-li. Research and application of two-dimensional high density resistivity tomography[J]. COAL GEOLOGY & EXPLORATION, 2008, 36(2): 55-58.
    [9]WANG Qi. The special processing of tomography to field data of tunnels perspective[J]. COAL GEOLOGY & EXPLORATION, 2001, 29(4): 55-57.
    [10]Cheng Jiulong, Yu Shijian, Qiu Wei, Cheng Hongliang, Song Zhenjiang. HIGH ACCURACY COMPUTER TOMOGRAPHY OF ELECTROMAGNETIC WAVE ON WORKING FACES AND ITS APPLICATION[J]. COAL GEOLOGY & EXPLORATION, 1999, 27(4): 62-64.
  • Cited by

    Periodical cited type(11)

    1. 刘春龙,徐青苗,刘丰永,胡芳芳,吴正富,张缘. 顺层岩质边坡稳定性简易解析公式. 公路. 2025(03): 11-18 .
    2. 刘英朴,许锐,李寻昌,任权. 基于微分演化算法的抗滑桩优化模型. 地下水. 2024(04): 136-140 .
    3. 宁永香,崔希民,崔建国. 基于ABC-GRNN组合模型的露天矿边坡变形预测. 煤田地质与勘探. 2023(03): 65-72 . 本站查看
    4. 沈简,陈苏萌. 高边坡施工安全风险评估指标重要性排序研究. 工程建设与设计. 2023(11): 258-260 .
    5. 荆宇涵. 甘肃省清水县王家山滑坡地质灾害特征及稳定性评价. 冶金管理. 2023(13): 95-97 .
    6. 欧阳刚. 滑坡地质灾害勘查与防治浅析. 冶金管理. 2021(09): 65-66 .
    7. 谢明钧,姚院峰,胡致远. 印尼某火电厂A2—A4区边坡防治项目工程实录. 水利与建筑工程学报. 2020(05): 215-220 .
    8. 熊超,赵鹏,武超,刘光华. 岩溶区层状岩质基坑边坡变形机制及治理分析——以天生三桥为例. 科学技术与工程. 2019(29): 260-265 .
    9. 颉保亮,廖志威,石富军,邹平波. 大型金属矿山边坡滑坡的成因及治理措施. 世界有色金属. 2019(19): 143-144 .
    10. 张思远. 江习古高速公路JK64+280~600段滑坡成因机制及治理. 产业与科技论坛. 2018(14): 89-91 .
    11. 肖拥军,王泰,李玉泉. 含软弱夹层库岸复杂滑坡体形成机制. 煤田地质与勘探. 2018(06): 133-137 . 本站查看

    Other cited types(1)

Catalog

    Article Metrics

    Article views PDF downloads Cited by(12)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return