WU Chunye, YIN Zhixiang, TANG Zhi. Stress analysis on coal after hydraulic fracturing of coal seam[J]. COAL GEOLOGY & EXPLORATION, 2016, 44(4): 114-118. DOI: 10.3969/j.issn.1001-1986.2016.04.022
Citation: WU Chunye, YIN Zhixiang, TANG Zhi. Stress analysis on coal after hydraulic fracturing of coal seam[J]. COAL GEOLOGY & EXPLORATION, 2016, 44(4): 114-118. DOI: 10.3969/j.issn.1001-1986.2016.04.022

Stress analysis on coal after hydraulic fracturing of coal seam

More Information
  • Received Date: August 24, 2015
  • Available Online: October 22, 2021
  • The law of coal and rock stress distribution after hydraulic fracturing plays a key role in the effect of scour prevention. the theoretical method was used to study the fracture distribution of water area and gas area, methane pressure and analytical solution of stress on coal seam after hydraulic fracturing and water pressure relief. Study shows that the pore pressure of water area changes little along the radial direction after hydraulic fracturing and is close to water injection pressure, gas pressure of gas area showes a decreasing trend along the radial direction. In a certain extent, the gas pressure rise area is formed in the periphery of the water area. The circumferential stress in the water area of the coal body will be reduced until it becoms tensile stress. Radial stress of coal body in gas area shows a decreasing trend along the radial direction. While after the water pressure is relieved, the pore pressure and radial stress of coal body in water and gas area both show a decreasing trend along the radial direction and the value of the radial stress of coal body in gas area is close to primary stress of coal body. The tangential stress and pore pressure of coal body in gas area shows a decreasing trend along the radial direction. All of the studies have provided the theoretical basis for using hydraulic fracturing to prevent rock burst.
  • Related Articles

    [1]HUANG Qisong, XU Bo, FENG Junjun, LIN Xiaofei, CHENG Jiulong, PENG Jun. Failure depths of stope floors under dynamic loading induced by roof breaking[J]. COAL GEOLOGY & EXPLORATION, 2024, 52(12): 13-24. DOI: 10.12363/issn.1001-1986.23.12.0822
    [2]HUANG Qisong, XU Bo, FENG Junjun, LIN Xiaofei, CHENG Jiulong, PENG Jun. Failure depths of stope floors under dynamic loading induced by roof breaking[J]. COAL GEOLOGY & EXPLORATION.
    [3]LI Bizhi, HAO Shijun, LIU Mingjun, ZHANG Qiang, BAI Gang, MO Haitao. Numerical simulation of safe distance through roadway drilling under dynamic load of large diameter rescue well[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(2): 260-266. DOI: 10.3969/j.issn.1001-1986.2021.02.033
    [4]SONG Weihua, DI Chunlei, DENG Zhaorui. Supporting technology of roadway crossing fractured zone of fault under dynamic and static load[J]. COAL GEOLOGY & EXPLORATION, 2019, 47(6): 135-143. DOI: 10.3969/j.issn.1001-1986.2019.06.021
    [5]LIU Chunhua, LIU Xinfu, ZHOU Chao, QI Yaoguang, ZHANG Shousen. Dynamometer card of sucker rod pumps in coalbed methane wells[J]. COAL GEOLOGY & EXPLORATION, 2014, 42(5): 38-43. DOI: 10.3969/j.issn.1001-1986.2014.05.008
    [6]WAN Zhansheng, YANG Zhe, WANG Jiading. Experimental study on dynamic properties of intact loess under train vibrating load[J]. COAL GEOLOGY & EXPLORATION, 2011, 39(2): 47-51. DOI: 10.3969/j.issn.1001-1986.2011.02.011
    [7]LIU Xin-fu, QI Yao-guang, LIU Chun-hua. Calculating method on static horsehead load of water drainage and gas production equipment about beam pump for CBM wells[J]. COAL GEOLOGY & EXPLORATION, 2009, 37(2): 75-78.
    [8]GAO Cheng-lei, LING Jian-ming. Numerical simulation of loading test on composite foundation with single rigid pile[J]. COAL GEOLOGY & EXPLORATION, 2008, 36(2): 40-42.
    [9]FU Qun-he. The influencing factors of composite foundation’s bearing capacity by loading test[J]. COAL GEOLOGY & EXPLORATION, 2006, 34(2): 37-40.
    [10]HUANG Qing-xiang. Simulating test on damage regularities of thick sandy soil layer and load distribution on key roof block in shallow coal seams[J]. COAL GEOLOGY & EXPLORATION, 2003, 31(6): 22-25.
  • Cited by

    Periodical cited type(14)

    1. 黄庆享,王雨凡,杜君武,郭强,范东林,王生彪,高锦龙. 浅埋大断面运输顺槽锚索替代单体超前加强支护研究. 西安科技大学学报. 2025(01): 12-25 .
    2. 王亮. 小回沟矿2204工作面运输巷变形特征与优化支护技术分析. 煤. 2024(06): 95-97 .
    3. 王凤翔. 掘进巷道过断层破碎带联合支护技术研究. 山西化工. 2024(05): 197-198 .
    4. 张运国,魏恒一. 承压含水层上巷道掘进过断层安全性分析与评价. 山东煤炭科技. 2024(06): 118-122 .
    5. 刘春记. 回风巷过断层破碎带围岩控制技术研究. 煤炭与化工. 2024(06): 45-48 .
    6. 张新蕾. 基于岩体力学参数的巷道锚杆支护应力数值模拟. 粉煤灰综合利用. 2023(02): 39-43 .
    7. 王丹. 深部过断层巷道围岩支护技术研究. 山西能源学院学报. 2023(02): 13-15 .
    8. 邵东阁. 回采巷道掘进过含水断层施工及支护技术研究. 山西能源学院学报. 2023(02): 7-9 .
    9. 张文杰,何满潮,王炯,马资敏,程满江,牛韶坤. 逆断层影响下无煤柱自成巷矿压规律及围岩控制. 煤田地质与勘探. 2023(05): 1-10 . 本站查看
    10. 刘云鹤. 42202工作面皮带巷过F_215逆断层技术实践. 机械管理开发. 2021(01): 176-178 .
    11. 李夕兵,宫凤强. 基于动静组合加载力学试验的深部开采岩石力学研究进展与展望. 煤炭学报. 2021(03): 846-866 .
    12. 吴建红. 复杂地质条件下掘进巷道支护参数优化研究及应用. 煤矿现代化. 2021(03): 10-12 .
    13. 丁万奇,马振乾,祖自银,谢红飞,杨威,陈川. 基于分形维数的巷道围岩裂隙演化规律研究. 煤田地质与勘探. 2021(03): 167-174 . 本站查看
    14. 苏朋. 巷道掘进过断层破碎带支护技术研究. 机械管理开发. 2021(10): 193-194 .

    Other cited types(4)

Catalog

    Article Metrics

    Article views (52) PDF downloads (10) Cited by(18)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return