XIE Yan, WANG Yong, HU Shuigen. One-dimensional simulation tests on permeation in stability of coal containing gas[J]. COAL GEOLOGY & EXPLORATION, 2015, 43(4): 27-30,35. DOI: 10.3969/j.issn.1001-1986.2015.04.006
Citation: XIE Yan, WANG Yong, HU Shuigen. One-dimensional simulation tests on permeation in stability of coal containing gas[J]. COAL GEOLOGY & EXPLORATION, 2015, 43(4): 27-30,35. DOI: 10.3969/j.issn.1001-1986.2015.04.006

One-dimensional simulation tests on permeation in stability of coal containing gas

More Information
  • Received Date: May 07, 2014
  • Available Online: October 21, 2021
  • In order to inspect the influences of gas seepage on the outburst of coal and gas, a set of device was made. The device includes coal sample cell, simulated roadway, device for compaction of coal sample, gas injection system and gas pressure measuring system. Several sample cells were assembled to observe the gas pressure gradient and ensure the same compactness of all coal samples. The grain size of coal samples was smaller than 4.75 mm. Coal samples were compacted at 15 MPa. The inner diameter of sample cell is 199 mm and its length is 1 000 mm. Ball valve was made as uncovering coal apparatus and its inner diameter is 40 mm. No axial pressure was loaded on coal samples during tests. The uncovering coal tests showed that the critical gas pressure gradient was 3.12 MPa/m. From the view of permeation in stability of coal containing gas, the process of the holes with small mouth and big belly as well as the principle of controlling outburst measures were analyzed.
  • Related Articles

    [1]ZHAO Hongbao, ZHANG Bo, ZHANG Chi, JI Dongliang. Mining-induced fault slip: Assessment model and method for determining fault instability ranges[J]. COAL GEOLOGY & EXPLORATION, 2025, 53(3): 23-33. DOI: 10.12363/issn.1001-1986.24.08.0558
    [2]LI Huakun, ZHENG Liugen, CHEN Yongchun, LI Bing, TAO Pengfei, LI Hao. Exploring the pore structure of reconstructed soils and its effects on water and salt transport based on CT scanning[J]. COAL GEOLOGY & EXPLORATION, 2024, 52(4): 120-127. DOI: 10.12363/issn.1001-1986.23.09.0586
    [3]QI Yueming, ZHOU Pei, ZHOU Lai, JIANG Dan, YANG Yuqing, LIU Yanzhuo. Sulphate contamination in an abandoned coal mine in light of mining effects[J]. COAL GEOLOGY & EXPLORATION, 2024, 52(4): 89-100. DOI: 10.12363/issn.1001-1986.23.11.0783
    [4]SUN Wenbin, HAO Jianbang, DAI Xianzheng, KONG Lingjun. Response mechanism characteristics of mining-induced fault activation[J]. COAL GEOLOGY & EXPLORATION, 2024, 52(4): 12-20. DOI: 10.12363/issn.1001-1986.23.09.0525
    [5]XU Bin, XIANG Fang, LI Shuxia. Distribution characteristics and paleo-climatic significance of continental climate-sensitive sediments in the Late Cretaceous in China[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(5): 190-199. DOI: 10.3969/j.issn.1001-1986.2021.05.021
    [6]CHENG Bin, ZHAO Long, LI Zhiliang. Permeability distribution law of protected coal seam in mining-affected zone[J]. COAL GEOLOGY & EXPLORATION, 2017, 45(3): 77-81,86. DOI: 10.3969/j.issn.1001-1986.2017.03.014
    [7]WANG Hao, QIAO Wei, CHAI Rui. Overburden rock permeability variation and vertical zoning characteristics under the influence of coal mining[J]. COAL GEOLOGY & EXPLORATION, 2015, 43(3): 51-55. DOI: 10.3969/j.issn.1001-1986.2015.03.010
    [8]FANG Tengjiao, LIAO Xuedong, HE Lubin, LI Jingjing. Failure mechanism and control of soft rock roadway under mining disturbance[J]. COAL GEOLOGY & EXPLORATION, 2014, 42(2): 67-70. DOI: 10.3969/j.issn.1001-1986.2014.02.014
    [9]LI Ming-jian, LU Meng-sheng, GUO Peng-shan. Study of environmental geology effect of mining in Nansihu Area[J]. COAL GEOLOGY & EXPLORATION, 2001, 29(6): 41-43.
    [10]Liu Ruixin. THE EFFECT OF MINING DISTURBANCE ON WATER INFLOW FROM THE RED BEDS INTO COAL MINE[J]. COAL GEOLOGY & EXPLORATION, 1992, 20(3): 37-39.
  • Cited by

    Periodical cited type(14)

    1. 吴见,张松航,贾腾飞,晁巍巍,彭文春,李世龙. 深部煤层钻孔保压取心流程分析及含气量测定方法. 石油实验地质. 2025(01): 163-172 .
    2. 何文渊,黄文松,崔泽宏,刘玲莉,段利江,赵一波. 澳大利亚苏拉特区块低煤阶煤层气有利区预测与高效开发策略. 石油与天然气地质. 2025(01): 31-46 .
    3. 申有义,王凯峰,唐书恒,张松航,郗兆栋,杨晓东. 沁水盆地榆社—武乡区块二叠系煤系页岩储层地质建模及“甜点”预测. 岩性油气藏. 2024(04): 98-108 .
    4. 刘同庆,宋玉龙,牟义,黄涛,汝亮,周绍辉,曹峰,孟国强. 基于Petrel的煤顶板三维地质模型及地应力模型构建. 煤矿安全. 2023(05): 100-105 .
    5. 李勇,陈祖国,徐建军,周加佳,苏善博,张震. 寺河井田3号煤层含气量三维建模. 科技和产业. 2023(22): 275-280 .
    6. 姜在炳,杨建超,李勇,庞涛. 基于三维地质建模技术的煤层气抽采效果评价——以晋城寺河煤矿为例. 煤田地质与勘探. 2022(02): 55-64 . 本站查看
    7. 高连平,宋培娟,王庄. 基于三维激光特征二次匹配的室外景观建模方法. 应用激光. 2022(03): 147-153 .
    8. 郭广山,郭建宏,孙立春,刘丽芳,田永净. 基于随机森林算法的煤层含气量三维精细建模. 中国海上油气. 2022(04): 156-163 .
    9. 徐冬生. 邢台市任泽区地热资源开发利用研究. 中国煤炭地质. 2022(S2): 66-70 .
    10. 韩明辉,杨雪,胡海洋. 多薄煤层气藏三维地质建模技术及其应用——以黔西地区攀枝花煤矿为例. 天然气技术与经济. 2022(06): 1-8 .
    11. 刘冰,张松航,唐书恒,王鹏飞,翟佳宇,纪朝琪. 无越流补给含水层对煤层气排采影响的数值模拟. 煤田地质与勘探. 2021(02): 43-53 . 本站查看
    12. 宣涛,王文升,刘灵童,李建荣,秦鹏. 不连续、薄互层煤层气地质建模技术——以澳大利亚苏拉特盆地为例. 中国煤炭地质. 2021(06): 31-36+68 .
    13. 熊幸,韩文龙,赵石虎. 基于灰色关联的沁南柿庄地区含气量主控因素分析. 煤炭技术. 2021(07): 93-97 .
    14. 刘同庆. 煤质工业分析测井解释及三维建模研究. 煤炭技术. 2021(09): 71-75 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (46) PDF downloads (5) Cited by(16)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return