Analysis of generalized inverse matrix inversion
More Information
Received Date:
July 29, 2013
Available Online:
October 26, 2021
Abstract
In this paper, from a linear objective function, using the singular value decomposition method to calculate generalized inverse matrix and add appropriate damping, using iterative method for solving overdetermined equations directly, the improvement of generalized inverse matrix inversion is realized. Further from the combination of theory and practice it is clarified that the generalized inverse matrix inversion method is flexible and stable, it covers the advantages of multiple inversion method, but also has its own characteristics, in fact adaptability is strong; it can provide some auxiliary information, can better evaluate interpretation results.
Related Articles
[1] LIU Changye, YANG Xianyu, CAI Jihua, WANG Ren, WANG Jianlong, DAI Fanfei, GUO Wanyang, JIANG Guosheng, FENG Yang. Intelligent identification method of drilling fluid rheological parameters based on machine learning [J]. COAL GEOLOGY & EXPLORATION, 2024, 52(5): 183-192. DOI: 10.12363/issn.1001-1986.24.01.0055
[2] MA Li, XUE Haijun, WEN Xiaogang, FENG Xihui. Prediction of K2 limestone and its aquosity by joint inversion of logging and seismic data [J]. COAL GEOLOGY & EXPLORATION, 2016, 44(4): 142-146. DOI: 10.3969/j.issn.1001-1986.2016.04.027
[3] TANG Ying, LI Lezhong, JIANG Shixin, ZHANG Binhai, ZHONG Mihong, SUN Yuhong. Parameter selection and applicability of gas content logging interpretation methodology in coal seam [J]. COAL GEOLOGY & EXPLORATION, 2015, 43(4): 94-98. DOI: 10.3969/j.issn.1001-1986.2015.04.020
[4] SUN Yuan, ZHANG Liang, ZHU Jun, XUE Tao, DING Juan. Application of seismic attribute parameters in forecasting coal seam thickness [J]. COAL GEOLOGY & EXPLORATION, 2008, 36(2): 58-60.
[5] WU Guan-mao, HUANG Ming, LI Gang. Gas content prediction based on BP neural network [J]. COAL GEOLOGY & EXPLORATION, 2008, 36(1): 30-33.
[6] CUI Ruo-fei, ZHONG Qi-tao, LI Jin-ping. Coal thickness interpretation prediction using seismic data [J]. COAL GEOLOGY & EXPLORATION, 2002, 30(3): 54-57.
[7] HAN Wan-lin, ZHANG You-di, LI Liang. Forecasting coal layer thickness by BP neural network from multiple seismic parameters [J]. COAL GEOLOGY & EXPLORATION, 2001, 29(4): 53-54.
[8] SHEN Nai-qi, YANG Jian-wei, ZHENG Xi-ping. Prediction of mining collapse based on neural network [J]. COAL GEOLOGY & EXPLORATION, 2001, 29(3): 42-44.
[9] Fang Zhijiang, Qu Zheng. APPLICATION OF BP NEURAL NETWORK IN ENVIRONMENTAL RECOGNITION MODEL [J]. COAL GEOLOGY & EXPLORATION, 2000, 28(2): 13-15.
[10] Chen Jiangfeng. THE RELATIONSHIP BETWEEN FRACTAL DIMENSION OF FISSURE NETWORK AND PERMEABILITY [J]. COAL GEOLOGY & EXPLORATION, 1999, 27(3): 50-52.
Cited by
Periodical cited type(13)
1.
弓毅伟,陈杰华,唐欣薇. 砂土地层暗挖施工结合MJS工法应用研究. 施工技术(中英文). 2024(23): 36-41+46 .
2.
姚志雄,夏华灿,黄敏,陈进,李健. 福州滨海软土MJS工法桩加固施工及环境效应. 地下空间与工程学报. 2023(03): 1019-1026+1037 .
3.
姚志雄,夏华灿,吴波,郑国文. MJS工法桩在滨海地区软基加固工程中的应用. 人民长江. 2023(10): 141-149 .
4.
刘欣,杨平,郑盛,王岩梓,陈潋,杨宁. MJS水泥土的试桩成桩效果. 林业工程学报. 2022(01): 169-176 .
5.
陈潋. 水平MJS在地下通道中的施工应用. 科技与创新. 2022(09): 162-164 .
6.
苗贺朝,褚振尧,黄选明,曹海东,姚恒,王海. 矿山砂卵石地层中截水帷幕长幅槽段稳定性研究. 煤田地质与勘探. 2022(07): 18-27 .
本站查看
7.
宋欢. MJS高压旋喷桩在基坑围护结构断口处的应用. 天津建设科技. 2021(01): 12-15 .
8.
熊仲明,覃泽宏,蔡虹,汪肆卜. 富水砂层盾构始发MJS工法桩的应用及分析. 铁道工程学报. 2021(03): 8-12+64 .
9.
冯国卫. RJP与三重管高压旋喷工艺在基坑加固工程中施工工艺对比分析. 城市道桥与防洪. 2021(08): 212-214+238+25 .
10.
王鹏,李林. 动水含砂层大直径超深高压旋喷桩施工技术. 城市道桥与防洪. 2021(10): 150-152+19 .
11.
罗帅训,赵建勃,贺雪峰,韦波锋. 高压旋喷多管喷头的研制. 探矿工程(岩土钻掘工程). 2020(07): 78-81+87 .
12.
朱明诚,韩强,赵贵斌,刘玉柱. 卵砾石含水层高压旋喷注浆止水帷幕技术. 煤田地质与勘探. 2020(04): 74-79 .
本站查看
13.
王海,彭巍,曹海东,王丽. 露天煤矿截水帷幕效果检验方法及截水效果分析. 煤田地质与勘探. 2020(04): 87-93 .
本站查看
Other cited types(4)