ZHAO Zhengguang, YANG Ruizhao, ZHANG Kaisong, SHANG Youyou, LONG Long, SUN Yufeng. Method and application of coal reservoir permeability prediction based on maximum principal curvature[J]. COAL GEOLOGY & EXPLORATION, 2014, 42(2): 39-44. DOI: 10.3969/j.issn.1001-1986.2014.02.008
Citation: ZHAO Zhengguang, YANG Ruizhao, ZHANG Kaisong, SHANG Youyou, LONG Long, SUN Yufeng. Method and application of coal reservoir permeability prediction based on maximum principal curvature[J]. COAL GEOLOGY & EXPLORATION, 2014, 42(2): 39-44. DOI: 10.3969/j.issn.1001-1986.2014.02.008

Method and application of coal reservoir permeability prediction based on maximum principal curvature

More Information
  • Received Date: November 09, 2012
  • Available Online: October 26, 2021
  • The paper introduced the principle of the application of coal reservoir permeability prediction method based on maximum principle curvature attribute of 3D seismic and predicted the structural fractures by using maximum principal curvature attribute of 3D seismic along layer. Through analyzing the mathematical function relation of the fracture interval, principle curvature, coalbed thickness and the fracture permeability, the calculation model of coal reservoir permeability prediction based on maximum principle curvature has been established. The permeability values derived from maximum principle curvature has fit well to the permeability values derived from well logs and coal samples. This study has shown that the permeability prediction method based on maximum curvature is feasible and effective to predict the coal reservoir permeability.
  • Related Articles

    [1]XU Changgui, JI Hongquan, WANG Cunwu, ZHU Xueshen. Enrichment patterns and exploration countermeasures of deep coalbed methane in the Linxing-Shenfu block on the eastern margin of the Ordos Basin[J]. COAL GEOLOGY & EXPLORATION, 2024, 52(8): 1-11. DOI: 10.12363/issn.1001-1986.24.01.0026
    [2]HU Lin, CHEN Yongchun, XU Yanfei, LI Bing, WANG Jin, AN Shikai, CHEN Chen, SUN Hongjie, MIAO Wei. Evaluation of water quality and identification of pollution factors in mining subsidence area with high phreatic water level[J]. COAL GEOLOGY & EXPLORATION, 2023, 51(11): 83-91. DOI: 10.12363/issn.1001-1986.23.02.0099
    [3]SUN Yajun, XU Zhimin, LI Xin, ZHANG Li, CHEN Ge, ZHAO Xianming, GAO Yating, LIU Qi, ZHANG Shangguo, WANG Weijun, ZHU Lulu, WANG Sheng. Mine water drainage pollution in China's coal mining areas and the construction of prevention and control technical system[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(5): 1-16. DOI: 10.3969/j.issn.1001-1986.2021.05.001
    [4]ZHOU Tingting, SU Lijuan, LIU Hui, ZHU Xiaojun. Variation law and influencing mechanism of surface movement parameters in Shendong Mining Area[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(3): 189-198. DOI: 10.3969/j.issn.1001-1986.2021.03.024
    [5]TAO Zhenpeng, YANG Ruidong, CHENG Wei, LUO Rui. Enrichment characteristics of associated elements of Late Permian coal and coal ash from Pu'an and Qinglong coal mining area in Guizhou Province[J]. COAL GEOLOGY & EXPLORATION, 2017, 45(4): 44-51. DOI: 10.3969/j.issn.1001-1986.2017.04.008
    [6]ZHAO Feng, QI Junde, DING Ziwei. Control of dynamic disasters induced by strong mine pressure in Huating Mine[J]. COAL GEOLOGY & EXPLORATION, 2015, 43(6): 75-79. DOI: 10.3969/j.issn.1001-1986.2015.06.015
    [7]WANG Youzhi. Low rank enrichment of coalbed methane in Hunchun basin[J]. COAL GEOLOGY & EXPLORATION, 2015, 43(3): 28-32. DOI: 10.3969/j.issn.1001-1986.2015.03.006
    [8]LI Zhihua, LI Shengli, YU Xinghe, FANG Xinxin. Coal bed methane enrichment regularities and controlling factors in Bowen-Surat basin, Australia[J]. COAL GEOLOGY & EXPLORATION, 2014, 42(6): 29-33. DOI: 10.3969/j.issn.1001-1986.2014.06.006
    [9]MA Guo-zhe. Predictive evaluation and prevention on the ground-caved in with coal-mining: A case study from Daliu coal-mine, Huating mining area[J]. COAL GEOLOGY & EXPLORATION, 2007, 35(2): 55-59.
    [10]Yan Huaping. GEOLOGICAL STRUCTURE AND OCCURRENCE LAWS OF COALBED IN PUXI MINE FIELD[J]. COAL GEOLOGY & EXPLORATION, 1999, 27(2): 19-22.
  • Cited by

    Periodical cited type(8)

    1. 田华,张若琳,王前吉,吴小雨,张蕾,张灵茹,方思源. 富油煤原位热解典型污染物时空分布特征. 煤田地质与勘探. 2024(07): 64-72 . 本站查看
    2. 王予新,王亚彬,周岩,陈宇,许晓飞,胡大鹏. 旋风洗涤除尘器压降及流体动力学特性. 化学工程. 2024(08): 60-65 .
    3. 辛林,吴景,王博伟,牛茂斐,马彦,高中祥. 煤炭地下气化燃空区残留物中重金属在模拟围岩中的迁移规律研究. 当代化工研究. 2023(06): 52-54 .
    4. 辛林,吴景,王博伟,牛茂斐,李佳泽,徐伟豪,王欣,尚振杰,李华龙,马彦. 煤炭地下气化典型有机物热解产出研究. 煤炭工程. 2023(05): 170-174 .
    5. 黄婉,王军,汪凌霞,易同生,陈可心,秦勇. 美国煤炭地下气化先导试验及其对现代UCG技术的贡献. 煤田地质与勘探. 2023(07): 34-42 . 本站查看
    6. 周泽,汪凌霞,秦勇,金军,杨磊,易同生. 澳大利亚UCG工程示范历程与启示. 煤田地质与勘探. 2023(07): 52-60 . 本站查看
    7. 王皓正,梁杰,臧志飞,陈世琳,赵泽,赵歌. 煤炭地下气化污染物富集和迁移规律——以王村矿煤矿为例. 煤炭科学技术. 2022(09): 240-248 .
    8. 徐向岑,冯乐乐. 地下煤气化中焦油与颗粒物的沿程特性. 当代化工研究. 2021(22): 36-39 .

    Other cited types(7)

Catalog

    Article Metrics

    Article views (78) PDF downloads (7) Cited by(15)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return