CHEN Mingsheng. Analysis of frequency electromagnetic souding phase problem[J]. COAL GEOLOGY & EXPLORATION, 2013, 41(5): 62-65. DOI: 10.3969/j.issn.1001-1986.2013.05.013
Citation: CHEN Mingsheng. Analysis of frequency electromagnetic souding phase problem[J]. COAL GEOLOGY & EXPLORATION, 2013, 41(5): 62-65. DOI: 10.3969/j.issn.1001-1986.2013.05.013

Analysis of frequency electromagnetic souding phase problem

More Information
  • Received Date: October 09, 2012
  • Available Online: October 22, 2021
  • Published Date: October 22, 2021
  • The complex resistivity of frequency electromagnetic sounding contains apparent resistivity of amplitude and phase, the phase can be expressed by the imaginary part and the real part of the complex resistivity can also be obtained through conversion of apparent resistivity of amplitude. This paper focuses on principle and formula which transform the apparent resistivity of amplitude into phase. According to the typical geoelectric model the apparent resistivity of amplitude and phase have been calculated, curve characteristics and the relationship between each other have been analyzed. The results display phase curves with greater amplitude and higher frequency. Therefore, it can improve the stratum resolution and increase the detecting depth. Through explanation combining with the data of apparent resistivity of amplitude and phase, the geological effect of the interpretation can be improved.
  • Related Articles

    [1]JIA Lidan, ZHANG Lin, LI Bobo, WU Xuehai, GAO Zheng, WANG Zhonghui, FU Jiale. Research on permeability model of coal reservoir along producing wellbores[J]. COAL GEOLOGY & EXPLORATION, 2022, 50(10): 26-34. DOI: 10.12363/issn.1001-1986.22.03.0213
    [2]WU Xuehai, LI Bobo, WANG Xin, GAO Zheng, LI Jianhua, XU Jiang. Plastic deformation-based constitutive relation of coal damage and permeability model[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(6): 131-141. DOI: 10.3969/j.issn.1001-1986.2021.06.016
    [3]WANG Qing, YANG Fei, GONG Weicheng, XU Tianxin, LI Yichao. Influencing factors of the dynamic permeability of CBM reservoir and CBM well drainage control measures[J]. COAL GEOLOGY & EXPLORATION, 2020, 48(2): 114-119. DOI: 10.3969/j.issn.1001-1986.2020.02.018
    [4]CHENG Bin, ZHAO Long, LI Zhiliang. Permeability distribution law of protected coal seam in mining-affected zone[J]. COAL GEOLOGY & EXPLORATION, 2017, 45(3): 77-81,86. DOI: 10.3969/j.issn.1001-1986.2017.03.014
    [5]PEI Bailin, HAO Jie, ZHANG Suian, YANG Liyuan. New mathematical model of the influence of coal matrix swelling and shrinkage on reservoir permeability[J]. COAL GEOLOGY & EXPLORATION, 2017, 45(1): 51-55. DOI: 10.3969/j.issn.1001-1986.2017.01.010
    [6]LIU Yanjie, LIU Chao, MA Bing, GUO Jing. Acidification experiment for enhancing the permeability of coal reservoir[J]. COAL GEOLOGY & EXPLORATION, 2016, 44(2): 46-49. DOI: 10.3969/j.issn.1001-1986.2016.02.009
    [7]JI Xiaokai, GUO Jianbin, XING Tongju, TAN Xipeng. Characteristics of stress-strain and strain-permeability of coal-bearing sedimentary rocks[J]. COAL GEOLOGY & EXPLORATION, 2015, 43(3): 66-71,76. DOI: 10.3969/j.issn.1001-1986.2015.03.013
    [8]LI Xiang-chen, KANG Yi-li, LUO Ping-ya. The effects of stress on fracture and permeability in coal bed[J]. COAL GEOLOGY & EXPLORATION, 2009, 37(1): 29-32.
    [9]FU Xue-hai, QIN Yong, LI Gui-zhong. An analysis on the principal control factor of coal reservoir permeability in Central and Southern Qinshui Basin[J]. COAL GEOLOGY & EXPLORATION, 2001, 29(3): 16-19.
    [10]Wu Pin, Jie Guangxin. SOME FACTORS INFLUENCING THE PERMEABILITY MEASUREMENT IN COAL SEAMS[J]. COAL GEOLOGY & EXPLORATION, 1997, 25(6): 23-25.
  • Cited by

    Periodical cited type(12)

    1. 郑永旺,崔轶男,李鑫,肖翠,郭涛,张登峰. 深层高阶煤层CO_2-ECBM技术研究与应用启示——以沁水盆地晋中地区为例. 石油实验地质. 2025(01): 143-152 .
    2. 张瑜. 碳中和目标下二氧化碳能源开发现状及展望. 化学工程师. 2025(02): 69-72+52 .
    3. 邓小鹏,相建华. 东曲矿8号煤CO_2和CH_4竞争吸附特性分子模拟研究. 煤矿安全. 2024(03): 18-24 .
    4. 司小昆. 封闭空间煤心固碳过程CO_2吸附-运移特征. 煤矿安全. 2024(04): 26-32 .
    5. 薛恩思. CO_2-ECBM过程中煤层渗透率演化规律. 煤矿安全. 2024(04): 42-47 .
    6. 宋平,崔晨光,张记刚,刘凯,邓振龙,谭龙,禹希科. 玛湖凹陷上乌尔禾组强敏感油藏CO_2同步吞吐试验. 新疆石油地质. 2024(03): 355-361 .
    7. 金毅,李娅妮,宋慧波,赵梦余,杨运航,陈泽楠. 分形界面吸附行为初探. 煤田地质与勘探. 2024(05): 1-11 . 本站查看
    8. 马亮,邓广哲,王守印,蔚斐,高亮,袁超. 碳封存超临界CO_2螺旋管换热器传热规律. 西安科技大学学报. 2024(03): 467-477 .
    9. 车永芳. 二氧化碳驱替煤层气技术发展现状分析. 煤质技术. 2024(05): 67-73 .
    10. 肖智勇,王刚,刘杰,邓华锋,姜枫,郑程程. 热–流–固耦合作用下含水煤层渗透率模型建立及应用研究. 岩石力学与工程学报. 2024(12): 3044-3057 .
    11. 苏现波,王乾,于世耀,赵伟仲,王小明,毕彩芹,陈明,王一兵,孙长彦,伏海蛟,邹成龙,张双斌,黄津,谢相军. 基于低负碳减排的深部煤系气一体化开发技术路径. 石油学报. 2023(11): 1931-1948 .
    12. 朱磊,刘成勇,古文哲,盛奉天,袁超峰. 双碳目标下“煤基固废-CO_2”协同充填封存技术构想. 矿业安全与环保. 2023(06): 16-21+28 .

    Other cited types(4)

Catalog

    Article Metrics

    Article views PDF downloads Cited by(16)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return