CHENG Bin, ZHAO Long, LI Zhiliang. Permeability distribution law of protected coal seam in mining-affected zone[J]. COAL GEOLOGY & EXPLORATION, 2017, 45(3): 77-81,86. DOI: 10.3969/j.issn.1001-1986.2017.03.014
Citation: CHENG Bin, ZHAO Long, LI Zhiliang. Permeability distribution law of protected coal seam in mining-affected zone[J]. COAL GEOLOGY & EXPLORATION, 2017, 45(3): 77-81,86. DOI: 10.3969/j.issn.1001-1986.2017.03.014

Permeability distribution law of protected coal seam in mining-affected zone

Funds: 

Science and Technology Innovation Fund of Xi'an Research Institute of CCTEG(2015XAYQN14)

More Information
  • Received Date: December 19, 2016
  • Published Date: June 24, 2017
  • In order to better conduct the gas drainage in a mining-affected zone, a working face and its protected coal seam of a mine in Huainan mining area were used as the research object. Physical similarity simulation, FLAC3D numerical simulation, historical fitting have been used to discuss the variation of the permeability of the protected coal seam on the target working face. The results show that for the protected coal seam in strike section, the length of the pressure relief area in the front of the working face is about 20 m, and the length of the pressure relief area in the back of the working face is about 30 m, the length of the fracture zone is about 30 m, and the rest is the re-compaction area. The permeability in pressure relief area is 150×10-3 μm2 to 250×10-3 μm2, the permeability of the fracture zone area is 400×10-3 μm2 to 800×10-3 μm2, and the permeability of re-compaction area is 16×10-3 μm2 to 100×10-3 μm2. The permeability of the protected coal seam in the mining area increased by 32~1 600 times compared with the original permeability.
  • [1]
    钱鸣高,石平五. 矿山压力与岩层控制[M]. 徐州:中国矿业大学出版社,2003
    [2]
    宋振骐. 实用矿山压力控制[M]. 徐州:中国矿业大学出版社, 1988.
    [3]
    侯忠杰. 采场老顶断裂岩块失稳类型判断曲线讨论[J]. 矿山压力与顶板管理,2002(2):1-3.

    HOU Zhongjie. Discussion on judgment curve of instability type of broken rock mass in upper roof[J]. Ground Pressure and Strata Control,2002(2):1-3.
    [4]
    黄庆享,钱鸣高,石平五. 浅埋煤层采场老顶周期来压的结构分析[J]. 煤炭学报,1999,24(6):581-585.

    HUANG Qingxiang,QIAN Minggao,SHI Pingwu. Structural analysis of the upper roof of the shallow coal seam[J]. Journal of China Coal Society,1999,24(6):581-585.
    [5]
    钱鸣高,缪协兴,何富连. 采场砌体梁结构的关键块分析[J]. 煤炭学报,1994,19(6):557-563.

    QIAN Minggao,MIU Xiexing,HE Fulian. Key block analysis of masonry beam structure[J]. Journal of China Coal Society,1994, 19(6):557-563.
    [6]
    侯忠杰. 老顶断裂岩块回转端角接触面尺寸[J]. 矿山压力与顶板管理,1999(3/4):29-31.

    HOU Zhongjie. The size of the angular contact surface of the ridge of the upper roof[J]. Ground Pressure and Strata Control, 1999(3/4):29-31.
    [7]
    钱鸣高,朱德仁. 老顶断裂模式及其对采面来压的影响[J]. 中国矿业大学学报,1986,14(2):9-16.

    QIAN Minggao,ZHU Deren. The upper roof fracture pattern and its influence on the face pressure[J]. Journal of China University of Mining & Technology,1986,14(2):9-16.
    [8]
    贾喜荣. 矿山岩层力学[M]. 北京:煤炭工业出版社,1997.
    [9]
    蒋金泉. 长壁工作面老顶初次断裂步距及类型研究[J]. 山东矿业学院学报,1991(4):23-30.

    JIANG Jinquan. Study on the initial rupture step and type of the first breakout of the upper roof of longwall working face[J]. Journal of Shandong Mining Institute,1991(4):23-30.
    [10]
    吴洪词. 长壁工作面基础板结构模型及其来压规律[J]. 煤炭学报,1997,22(3):259-264.

    WU Hongci. Structural model of base slab of longwall face and its pressure regulation[J]. Journal of China Coal Society,1997, 22(3):259-264.
    [11]
    陈忠辉,谢和平. 长壁工作面采场围岩铰接薄板组力学模型研究[J]. 煤炭学报,2005,30(2):172-176.

    CHEN Zhonghui,XIE Heping,Study on plate group mechanical model formain roof of longwall face[J]. Journal of China Coal Society,2005,30(2):172-176.
    [12]
    钱鸣高,缪协兴,许家林. 岩层控制中的关键层理论研究[J]. 煤炭学报,1996,21(3):225-230.

    QIAN Minggao,MIU Xiexing,XU Jialin. Research on key layer theory in rock stratum control[J]. Journal of China Coal Society, 1996,21(3):225-230.
    [13]
    许家林,钱鸣高. 覆岩关键层位置的判断方法[J]. 中国矿业大学学报,2000,30(5):463-467.

    XU Jialin,QIAN Minggao. The judgment method of key strata position[J]. Journal of China University of Mining & Technology,2000,30(5):463-467.
    [14]
    钱鸣高,茅献彪,缪协兴. 采场覆岩中关键层上载荷的变化规律[J],煤炭学报,1998,23(2):135-150.

    QIAN Minggao,MAO Xianbiao,MIU Xiexing. Variation of load on key layer in overlying strata of stope[J]. Journal of China University of Mining & Technology,1998,23(2):135-150.
    [15]
    侯忠杰. 浅埋煤层关键层研究[J]. 煤炭学报,1999,24(4):359-363.

    HOU Zhongjie. Study on key layer of shallow buried coal seam[J]. Journal of China Coal Society, 1999, 24(4):359-363.
    [16]
    KARMIS M,TRIPLETT T,HAYCOCKS C,et al. Mining subsidence and its prediction in the appalachian coalfield[J]. U S Symposium on Rock Mechanics,1983(1):665-675.
    [17]
    刘天泉. 矿山岩体采动影响与控制工程学及其应用[J]. 煤炭学报,1995,20(1):1-5.

    LIU Tianquan. Influence of mining rock mass mining and control engineering and its application[J]. Journal of China Coal Society,1995,20(1):1-5.
    [18]
    李志梁. 采高及关键层层位对覆岩裂隙演化影响的实验研究[D]. 西安:西安科技大学,2014.
    [19]
    茹婷,王晶,刘娜娜,等. 煤层气数值模拟与排采工艺技术研究[R]. 西安:中煤科工集团西安研究院有限公司, 2014:51.
    [20]
    赵龙. 采动条件下被保护煤层渗透率变化规律研究——以潘三煤矿为例[D]. 西安:西安科技大学,2014:46-47.
  • Related Articles

    [1]LI Guofu, LI Chao, ZHANG Bichuan, XU Yun, WANG Zheng, ZHOU Xianjun. Gas drainage and utilization in coal mines in China: History, technological advances, and prospects[J]. COAL GEOLOGY & EXPLORATION, 2025, 53(1): 77-91. DOI: 10.12363/issn.1001-1986.24.11.0712
    [2]LI Guofu, LI Chao, ZHANG Bichuan, XU Yun, WANG Zheng, ZHOU Xianjun. The development process, technological progress and prospect of coal mine gas drainage and utilization in China[J]. COAL GEOLOGY & EXPLORATION.
    [3]XUE Junhua, XIAO Jian, DU Xuanhong, SHI Yu. Current situation and development trend of pressure-relief gas extraction in the protective layer mining in coal mines in China[J]. COAL GEOLOGY & EXPLORATION, 2023, 51(6): 50-61. DOI: 10.12363/issn.1001-1986.22.11.0894
    [4]FU Junhui. One surface borehole with multi-usage gas drainage key technology for abandoned well and its application[J]. COAL GEOLOGY & EXPLORATION, 2023, 51(3): 1-9. DOI: 10.12363/issn.1001-1986.22.06.0513
    [5]WU Xuehai, LI Bobo, WANG Xin, GAO Zheng, LI Jianhua, XU Jiang. Plastic deformation-based constitutive relation of coal damage and permeability model[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(6): 131-141. DOI: 10.3969/j.issn.1001-1986.2021.06.016
    [6]CHEN Yuexia, CHU Tingxiang, CHEN Peng, TANG Yang. Quantitative study of 3D numerical simulation on optimizing borehole layout spacing of gas drainage[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(3): 78-84, 94. DOI: 10.3969/j.issn.1001-1986.2021.03.010
    [7]LIU Xingkui, ZHOU Aitao. Application of three-dimensional numerical simulation for law of gas drainage through high-level boreholes in lower protective coal seam[J]. COAL GEOLOGY & EXPLORATION, 2016, 44(2): 127-133. DOI: 10.3969/j.issn.1001-1986.2016.02.023
    [8]MOU Lin. Technology of water hazard control with protection layer for gassy coal seam[J]. COAL GEOLOGY & EXPLORATION, 2015, 43(5): 57-60. DOI: 10.3969/j.issn.1001-1986.2015.05.014
    [9]CUI Hongqing, LI Dejun, MA Xiao. Meticulous gas geological exploration in coal mines on the basis of gas drainage boreholes[J]. COAL GEOLOGY & EXPLORATION, 2013, 41(3): 7-10. DOI: 10.3969/j.issn.1001-1986.2013.03.002
    [10]WU Jie, SANG Shuxun, FANG Liangcai, HUANG Huazhou, WU Guodai, YANG Xinchao. Protective seam mining released range and the site deployment of the released methane draining surface well in Huainan mine area[J]. COAL GEOLOGY & EXPLORATION, 2010, 38(3): 10-14. DOI: 10.3969/j.issn.1001-1986.2010.03.003

Catalog

    Article Metrics

    Article views (74) PDF downloads (7) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return