LI Yanfang, CHENG Jianyuan, WANG Cheng. Seismic attribute optimization based on support vector machine and coalbed methane prediction[J]. COAL GEOLOGY & EXPLORATION, 2012, 40(6): 75-78. DOI: 10.3969/j.issn.1001-1986.2012.06.017
Citation: LI Yanfang, CHENG Jianyuan, WANG Cheng. Seismic attribute optimization based on support vector machine and coalbed methane prediction[J]. COAL GEOLOGY & EXPLORATION, 2012, 40(6): 75-78. DOI: 10.3969/j.issn.1001-1986.2012.06.017

Seismic attribute optimization based on support vector machine and coalbed methane prediction

More Information
  • Received Date: October 11, 2011
  • Available Online: October 26, 2021
  • In order to take full advantages of seismic attribute analysis technology, this paper explained the principle of support vector machine (SVM) based on event of small samples; SVM method for nonlinear optimization of seismic attributes in coal field was applied in prediction of coalbed methane (CBM) content and produced good effect. The study results indicate that the prediction of CMB based on SVM attribute optimization is more precise than using the drilling interpolations method, can better solve the learning problems of small samples and can be used as an effective method for the prediction of CMB.
  • Related Articles

    [1]TONG Jiangnan, WANG Feng, ZHANG Feng, HOU Wei, LI Zhongbai, JI Liang, JIANG Yanan, SUN Wei. Application of five seismic attributes in natural fracture prediction for deep coalbed methane production along the eastern margin of the Ordos Basin[J]. COAL GEOLOGY & EXPLORATION, 2025, 53(4): 222-234. DOI: 10.12363/issn.1001-1986.24.08.0547
    [2]YIN Haiyang, CHEN Tongjun, SONG Xiong, XU Haicheng, LI Wan. Methods for predicting the thickness of coal seams based on seismic attribute optimization and machine learning[J]. COAL GEOLOGY & EXPLORATION, 2023, 51(5): 164-170. DOI: 10.12363/issn.1001-1986.22.10.0801
    [3]ZENG Aiping, ZHANG Jiawei, REN Enming, LIU Tao, JIANG Fei, LIU Xingjin, SU Huairui. Research on the coal thickness prediction method based on VMD and SVM[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(6): 243-250. DOI: 10.3969/j.issn.1001-1986.2021.06.029
    [4]CHEN Tao, ZHANG Zhansong, ZHOU Xueqing, GUO Jianhong, XIAO Hang, TAN Chenyang, QIN Ruibao, YU Jie. Prediction model of coalbed methane content based on well logging parameter optimization[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(3): 227-235, 243. DOI: 10.3969/j.issn.1001-1986.2021.03.029
    [5]ZANG Zijing, WU Haibo, ZHANG Pingsong, DONG Shouhua. Prediction of coal seam gas content based on ABC-BP model[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(2): 152-158. DOI: 10.3969/j.issn.1001-1986.2021.02.019
    [6]GAO Weidong, WANG Zhengshuai. Forecast of inrushed water volume grade from coal floor based on support vector machine with particle swarm optimization[J]. COAL GEOLOGY & EXPLORATION, 2012, 40(6): 44-47. DOI: 10.3969/j.issn.1001-1986.2012.06.010
    [7]TIAN Wei, SUN Xiaofei, ZHANG Yanyu, LI Weidong, SUN Renyuan. Type curves for coalbed methane production prediction in Fanzhuang[J]. COAL GEOLOGY & EXPLORATION, 2012, 40(4): 25-28. DOI: 10.3969/j.issn.1001-1986.2012.04.006
    [8]SHI Juntai, LI Xiangfang, ZHANG Dongling, HU Xiaohu, LI Qian, HU Suming, WU Keliu. Optimization of well pattern in the development of coalbed methane through vertical wells[J]. COAL GEOLOGY & EXPLORATION, 2012, 40(2): 28-30. DOI: 10.3969/j.issn.1001-1986.2012.02.007
    [9]ZHANG Pei-he, LI Gui-hong, LI Jian-wu. The review on the predictive methodology of coalbed methane recovery efficiency[J]. COAL GEOLOGY & EXPLORATION, 2006, 34(5): 26-30.
    [10]JIAO Si-hong, QIN Yong, QU Yong-hua. A new dynamic forecast model of coalbed methane production[J]. COAL GEOLOGY & EXPLORATION, 2001, 29(2): 28-30.
  • Cited by

    Periodical cited type(18)

    1. 王博睿,张远航. 含隐伏断层底板原生缺陷致灾前兆研究. 煤炭技术. 2025(01): 216-220 .
    2. 王勤明,刘艳杰. 济阳煤矿底板突水危险性评价. 内蒙古煤炭经济. 2024(07): 58-60 .
    3. 左建平,吴根水. 深部底板水锤突水效应及递进–导升力学模型研究. 岩石力学与工程学报. 2024(08): 1852-1869 .
    4. 李远. 微震监测技术在煤矿顶底板裂隙发育探测规律的研究与应用. 煤炭科技. 2024(04): 225-230 .
    5. 王秉文,查文华,鲁海峰. 深部开采环境下底板隔水关键层深梁力学分析. 煤田地质与勘探. 2024(09): 80-91 . 本站查看
    6. 陈光波,刘凤旭. 基于F-ANP模型的煤矿突水危险性评价. 矿业安全与环保. 2023(04): 129-134 .
    7. 鲁晶津,王云宏,崔伟雄,王冰纯,段建华,南汉晨,杨伟. 矿井水害音频电透视法监测水槽物理模拟试验研究. 煤炭科学技术. 2023(S1): 265-274 .
    8. 赵建忠,刘兴学,哈斯特尔·胡完. 煤层底板水对煤层开采的内在影响. 露天采矿技术. 2023(06): 11-14 .
    9. 李回贵,苏德国,孙维,许国胜,王军. 黔北煤田灰岩含水层对开采13号煤层的影响研究. 矿业安全与环保. 2023(06): 130-135 .
    10. 田凡凡,薛喜成. 煤层底板开采破坏深度研究综述. 能源与环保. 2022(01): 289-298 .
    11. 高耀全,高银贵,陆自清,孔皖军. 基于透明地质的唐家会煤矿奥灰水防治技术. 煤田地质与勘探. 2022(01): 101-108 . 本站查看
    12. 郭国强. 综放开采特厚煤层采场底板破坏规律研究. 煤田地质与勘探. 2022(08): 107-115 . 本站查看
    13. 薛岚华. 九里山矿底板突水监测预警技术的实践应用. 山东煤炭科技. 2021(02): 148-150 .
    14. 李鹏. 矿井综采工作面底板突水综合监测技术研究. 山西化工. 2021(01): 61-63 .
    15. 王皓,董书宁,乔伟,姬亚东,朱开鹏,周振方,宁殿艳,尚宏波. 矿井水害防控远程服务云平台构建与应用. 煤田地质与勘探. 2021(01): 208-216 . 本站查看
    16. 高银贵,孔皖军,陈永春,薛贤明,郑刘根,常成林,姜春露,国伟,雷锋,王刚. 特厚煤层综放开采下工作面底板岩层破坏特征. 能源环境保护. 2021(06): 68-75 .
    17. 程胜,邹素. 网络并行电法仪在煤矿底板动态监测中的应用. 山东煤炭科技. 2021(12): 133-135 .
    18. 张爱华,陈建东. 微震监测地质异常对工作面回采影响分析. 煤炭与化工. 2021(12): 40-43 .

    Other cited types(10)

Catalog

    Article Metrics

    Article views (76) PDF downloads (9) Cited by(28)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return