YANG Wei, YANG Linlin, AN Jing, ZHANG Shuguang. Numerical simulation and analysis of mine ventilation temperature field of integrated mining area in high temperature mine[J]. COAL GEOLOGY & EXPLORATION, 2011, 39(5): 55-58. DOI: 10.3969/j.issn.1001-1986.2011.05.013
Citation: YANG Wei, YANG Linlin, AN Jing, ZHANG Shuguang. Numerical simulation and analysis of mine ventilation temperature field of integrated mining area in high temperature mine[J]. COAL GEOLOGY & EXPLORATION, 2011, 39(5): 55-58. DOI: 10.3969/j.issn.1001-1986.2011.05.013

Numerical simulation and analysis of mine ventilation temperature field of integrated mining area in high temperature mine

More Information
  • Received Date: December 08, 2010
  • Available Online: March 10, 2023
  • The paper, taking integrated mining area in high temperature mine as the research object, used two-dimensional numerical simulation for air heat exchange system in filling area and coal.The calculation results show that when the initial temperature for air is 295.95 K and the initial temperature for coal and backfill materials is 313.15 K, the air temperature in the gateway and working face is bellow 304.52 K, the minimum difference of temperature of air, coal and backfill materials in gateway and working face is 0.5 K.The temperature of coal and backfill materials drops from the initial 313.15 K to 299~314 K.The caloric value of the air in gateway, working face and air return entry ranges from 76.17 to 83.10 kJ/kg after heat convection.When dilution and elimination of toxic or harmful gases and dust in working face are mot considered, only decrease of temperature in crossheading and working face is taken into account, Re of 13 808 to 276 170 can meet requirements.Re below 69 040 is appropriate in consideration of small power loss.Considering acquiring and eliminating high temperature gas, Re above 69040 can be used.This conclusion provides an important basis for the comprehensive control of mine heat hazard.
  • Related Articles

    [1]YAO Ningping, WEI Hongchao, ZHANG Jinbao, LU Chengda, LIHao, YAO Yafeng, KE Yougang, ZHANG Youzhen. Intelligent optimization method for tunnel rotary drilling based on drill string state estimation[J]. COAL GEOLOGY & EXPLORATION.
    [2]YAO Ningping, WEI Hongchao, ZHANG Jinbao, LU Chengda, LI Hao, YAO Yafeng, KE Yougang, ZHANG Youzhen. Intelligent optimization method for tunnel rotary drilling based on drill string status estimation[J]. COAL GEOLOGY & EXPLORATION, 2023, 51(11): 141-148. DOI: 10.12363/issn.1001-1986.23.06.0329
    [3]QIN Chengshuai, SUN Hongbin, LI Liping, LIU Xuegang, LIU Zhihui, FENG Chun, SUN Zizheng. Continuous and discontinuous numerical simulation of the rock breaking process of PDC drill bit under composite impact[J]. COAL GEOLOGY & EXPLORATION, 2023, 51(9): 109-120. DOI: 10.12363/issn.1001-1986.23.05.0293
    [4]WANG Chuanliu, JIN Xin, GAO Xiaoliang, ZHANG Peng. Optimized design and surface additive technology of PDC bit for hard rock directional drilling[J]. COAL GEOLOGY & EXPLORATION, 2022, 50(8): 157-164. DOI: 10.12363/issn.1001-1986.22.03.0130
    [5]ZHANG Youzhen, ZHANG Ning, ZHANG Xianzhen. Mechanical characteristics and test of rotary drilling of PDC anchor bit[J]. COAL GEOLOGY & EXPLORATION, 2019, 47(2): 207-211,216. DOI: 10.3969/j.issn.1001-1986.2019.02.032
    [6]XU Baolong, YAO Ningping, WANG Li, CAO Jing, DOU Xuqian. Hole-bottom hydraulic pressurization technology for directional drilling in hard rock in underground coal mines[J]. COAL GEOLOGY & EXPLORATION, 2019, 47(2): 31-35,43. DOI: 10.3969/j.issn.1001-1986.2019.02.006
    [7]JIN Xin. The selection and test analysis of PDM for directional drilling in hard rock[J]. COAL GEOLOGY & EXPLORATION, 2018, 46(1): 176-180. DOI: 10.3969/j.issn.1001-1986.2018.01.030
    [8]DENG Lirong, LIU Zhenxing, CAO Jun, YIN Xiaoli. Experiment of drilling fluid used to drill hard fractured complex formation[J]. COAL GEOLOGY & EXPLORATION, 2015, 43(4): 117-119. DOI: 10.3969/j.issn.1001-1986.2015.04.026
    [9]LEI Xiaorong. Research and application of inclinometer while drilling for rotary drilling[J]. COAL GEOLOGY & EXPLORATION, 2015, 43(3): 118-121. DOI: 10.3969/j.issn.1001-1986.2015.03.025
    [10]Zhang Yuanfeng. APPLICATION OF CSR DRILLING TECHNIQUE WITH EQUIPMENT MADE IN CHINA IN EAST XUANHUA COAL FIELD[J]. COAL GEOLOGY & EXPLORATION, 1993, 21(4): 62-66.
  • Cited by

    Periodical cited type(9)

    1. 王家乐,王学安,南娜,李耿,王传留. 覆岩离层注浆用煤矸石基充填材料微结构及充填物化性能研究. 煤炭加工与综合利用. 2024(12): 127-132 .
    2. 罗安清,李斌文,姜宇升,王策,高国强,牟义,吾木提江·许库尔. 石炭二叠系井田立井奥灰水害探查治理技术. 煤炭工程. 2023(06): 30-36 .
    3. 李宗怡. 注浆材料在路面病害治理中的试验分析. 交通科技与管理. 2023(01): 99-101 .
    4. 俞存海. 基于有限元的沥青路面水扩散及水损伤研究. 青海交通科技. 2023(05): 120-123+139 .
    5. 徐灿. 沥青路面病害治理中注浆材料制备及性能试验研究. 交通世界. 2022(13): 23-26 .
    6. 赵兵朝,马云祥,郭亚欣,孙浩,王京滨,王海龙. 湿陷性黄土相似材料力学特性试验研究. 矿业安全与环保. 2022(03): 9-14 .
    7. 苗贺朝,王海,王晓东,王皓,许刚刚. 粉煤灰基防渗注浆材料配比优选及其性能试验研究. 煤炭科学技术. 2022(09): 230-239 .
    8. 陈清通,牟义,陈凯. 露井联采回填区域地基注浆加固技术. 煤炭工程. 2021(05): 74-79 .
    9. 刘汉斌,程芳琴. 基于资源和地质环境特征的河东煤田煤炭绿色开采战略研究. 煤田地质与勘探. 2021(03): 8-17 . 本站查看

    Other cited types(3)

Catalog

    Article Metrics

    Article views (44) PDF downloads (4) Cited by(12)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return