Elastic wave prestack depth migration based on screen method
1. College of Geo-Resource and Information, China University of Petroleum, Qingdao 266555, China;
2. Exploration and Development Institute of Xinjiang Oil Field, Kelamayi 834000, China;
3. Shixi Field Operation District of Xinjiang Oil Field, Kelamayi 834000, China;
4. Luliang Field Operation District of Xinjiang Oil Field, Kelamayi 834000, China
More Information
Received Date:
December 04, 2008
Available Online:
March 12, 2023
Abstract
Elastic wave migration is one of the key technologies of multicomponent exploration. In this paper, the finite-difference compensation in Fourier finite-difference method of acoustic equation is applied to elastic screen propagator. Vector imaging condition is used through calculating polarized vector, and projecting component to polarized direction. It makes the information carried in wave field used efficiently and resolves the polarization issue of P-SV in imaging, which allows partial images from different sources and can be stacked to generate a final image. Finally, elastic screen propagator with wide angle correction and vector imaging condition are tested with model data, and the migration result is ideal.
Related Articles
[1] XIAN Bao’an, ZHANG Long, HA ERHENG∙Tu’ersong, YU Peng, WANG Kai, ZHANG Yafei, ZHANG Yang, WANG Sanshuai, LI Zongyuan. Damage mechanism of CBM reservoirs and double-layered screen pipes in the horizontal well completion [J]. COAL GEOLOGY & EXPLORATION, 2022, 50(9): 122-129. DOI: 10.12363/issn.1001-1986.21.12.0811
[2] WANG Siyi, LI Quanxin, LIU Jianlin, ZHAO Jiangpeng, LIU Yong. Development and application of a plastic screen pipe conveyor [J]. COAL GEOLOGY & EXPLORATION, 2016, 44(3): 136-140. DOI: 10.3969/j.issn.1001-1986.2016.03.027
[3] ZHANG Liang, YAO Leihua, WANG Yingdong. 3D geological modeling method based on COMSOL Multiphysics [J]. COAL GEOLOGY & EXPLORATION, 2014, 42(6): 14-19. DOI: 10.3969/j.issn.1001-1986.2014.06.003
[4] ZHAO Yongzhe. Well completion technology by screen pipe for horizontally-intersected well in soft coal seam [J]. COAL GEOLOGY & EXPLORATION, 2014, 42(4): 100-102. DOI: 10.3969/j.issn.1001-1986.2014.04.023
[5] QIU Weizhong. Topographic effects and correction methods of loop source TEM in mountainous exploration [J]. COAL GEOLOGY & EXPLORATION, 2012, 40(5): 78-81. DOI: 10.3969/j.issn.1001-1986.2012.05.020
[6] YANG Yuan-hai. THE CORRECTING METHODS TO INCREASE THE IMAGE RECONSTRUCTION EFFECTIVENESS [J]. COAL GEOLOGY & EXPLORATION, 1998, 26(5): 63-66.
[7] Li Jinfei, Li Renhou, Wang Wende. STUDY ON THE EXTRACTION OF EFFECTIVE WAVE USING ANALYTIC SIGNAL METHOD IN MULTICOMPONENT RAYLEIGH WAVE EXPLORATION [J]. COAL GEOLOGY & EXPLORATION, 1998, 26(2): 61-64.
[8] QU Lian-zhong. THE MULTICOMPONENT RAYLEIGH WAVE EXPLORATION SYSTEM AND ITS TEST EFFECTIVENESS [J]. COAL GEOLOGY & EXPLORATION, 1997, 25(4): 50-53.
[9] Ma Zhikan, Liu Jianming, Liu Yuguo. STUDY OF THE METHOD OF CLASSIFICATION OF DRILLABILITY OF ROCKS IN THE COAL-BEARING FORMATIONS [J]. COAL GEOLOGY & EXPLORATION, 1993, 21(1): 70-78.
[10] Guo Weijia, Lian Chuanjie, Liu Limin. A IMPORTANT WAY TO CONTROL FLOOR WATER INRUSH BY IMPROVING MINING METHODS [J]. COAL GEOLOGY & EXPLORATION, 1992, 20(3): 40-43.
Cited by
Periodical cited type(10)
1.
杨雪,田冲,杨雨然,张景缘,王青,吴伟,罗超. 四川盆地长宁地区深层煤层气成藏特征与勘探潜力. 油气藏评价与开发. 2025(02): 194-204 .
2.
吴鹏,胡维强,李洋冰,马立涛,李勇,赵霏,牛艳伟,陈建奇,李盼盼,刘再振,李晨晨,曹地,刘成. 临兴–神府区块深部煤层气地球化学特征及其影响因素. 煤田地质与勘探. 2024(05): 56-66 .
本站查看
3.
张帅. 突出煤层群立体联合抽采混源瓦斯溯源技术研究. 中国煤炭地质. 2024(07): 1-7 .
4.
黄道军,周国晓,杨兆彪,顾俊雨,荆雪媛,王嘉楠. 鄂尔多斯盆地深部煤岩气井产出气-水地球化学特征及其地质响应. 石油与天然气地质. 2024(06): 1617-1627 .
5.
简阔,傅雪海,夏大平,冯睿智,李咪,吉小峰. 我国次生生物成因煤层气研究进展. 煤矿安全. 2023(04): 11-21 .
6.
涂志民,车延前,李鹏,林文姬. 新疆后峡盆地中–低阶煤煤层气成藏模式. 煤田地质与勘探. 2022(05): 43-49 .
本站查看
7.
魏若飞,信凯. 鄂尔多斯盆地东缘石西区块煤层气及致密砂岩气资源潜力评价. 中国煤炭地质. 2022(07): 7-11+38 .
8.
魏强,刘家乐,童家颖,石从秋,刘朝奇. 淮南潘集深部11-2煤层含气量与地球化学特征及其地质条件影响因素分析. 宿州学院学报. 2022(09): 33-38 .
9.
翟佳宇,张松航,唐书恒,郭慧秋,刘冰,纪朝琪. 云南老厂雨汪煤层气区块气水成因及产能响应. 现代地质. 2022(05): 1341-1350 .
10.
康永尚,邓泽,皇甫玉慧,毛得雷. 中煤阶煤层气高饱和—超饱和带的成藏模式和勘探方向. 石油学报. 2020(12): 1555-1566 .
Other cited types(6)