XIAN Bao’an,ZHANG Long,HA ERHENG∙Tu’ersong,et al. Damage mechanism of CBM reservoirs and double-layered screen pipes in the horizontal well completion[J]. Coal Geology & Exploration,2022,50(9):122−129. DOI: 10.12363/issn.1001-1986.21.12.0811
Citation: XIAN Bao’an,ZHANG Long,HA ERHENG∙Tu’ersong,et al. Damage mechanism of CBM reservoirs and double-layered screen pipes in the horizontal well completion[J]. Coal Geology & Exploration,2022,50(9):122−129. DOI: 10.12363/issn.1001-1986.21.12.0811

Damage mechanism of CBM reservoirs and double-layered screen pipes in the horizontal well completion

More Information
  • Received Date: December 14, 2021
  • Revised Date: May 06, 2022
  • Available Online: August 07, 2022
  • Coal reservoirs have the characteristics of high adsorption, low permeability, easy compression and easy breakage. At the drilling and completing stage of horizontal coalbed methane wells, coal reservoir damage often occurs and leads to a significant reduction in coal seam permeability, thereby resulting in single well production. Through experimental analysis, the solid phase particles in drilling and completion fluids for horizontal well and the solid phase components induced by fluid flow are found to block the micro-fractures in the coal reservoir, and the damage mechanism for coal reservoir is elucidated to the drilling and completion reservoir of the horizontal well of coal-bed methane. On this basis, the completion technology for horizontal well is proposed with double-layered screen tube to analyze the mechanism of mitigating the coal reservoir damage, the mud cake of horizontal well wall drilling fluids is eliminated by the hydraulic impact of the flushing pipe, the micro-fissure pulverized coal near the well wall is removed, and the stress and permeation effect is generated in the near well zone. Compared with the conventional multi-branch horizontal wells and segmented fracturing horizontal wells of coalbed methane, the stable daily production and stable production period have been greatly improved with the double-layered screen pipe in the completion of horizontal wells. The application of this technology in some areas of the southern Qinshui Basin shows that the average daily output of No.3 coalbed methane well has increased to 20 000 m3. Moreover, a significant breakthrough has been made in the development of No.15 coalbed methane with the average daily output increasing to more than 10 000 m3. The research results have important theoretical and practical significance for reducing reservoir damage during the drilling and completion of coal-bed methane horizontal wells and enhancing the production of coal-bed methane wells.

  • [1]
    杨陆武,孙茂远. 中国煤层气藏的特殊性及其开发技术要求[J]. 天然气工业,2001,21(6):17−19. DOI: 10.3321/j.issn:1000-0976.2001.06.005

    YANG Luwu,SUN Maoyuan. Peculiarities of China CBM reservoirs and their dictation on CBM production technology[J]. Natural Gas Industry,2001,21(6):17−19. DOI: 10.3321/j.issn:1000-0976.2001.06.005
    [2]
    孙茂远,杨陆武,吕宣文. 开发中国煤层气资源的地质可能性与技术可行性[J]. 煤炭科学技术,2001,29(11):45−46. DOI: 10.3969/j.issn.0253-2336.2001.11.017

    SUN Maoyuan,YANG Luwu,LYU Xuanwen. Geology possibility and technology feasibility to develop coalbed methane resources in China[J]. Coal Science and Technology,2001,29(11):45−46. DOI: 10.3969/j.issn.0253-2336.2001.11.017
    [3]
    穆福元,王红岩,吴京桐,等. 中国煤层气开发实践与建议[J]. 天然气工业,2018,38(9):55−60. DOI: 10.3787/j.issn.1000-0976.2018.09.007

    MU Fuyuan,WANG Hongyan,WU Jingtong,et al. Practice of and suggestions on CBM development in China[J]. Natural Gas Industry,2018,38(9):55−60. DOI: 10.3787/j.issn.1000-0976.2018.09.007
    [4]
    崔树清,王风锐,刘顺良,等. 沁水盆地南部高阶煤层多分支水平井钻井工艺[J]. 天然气工业,2011,31(11):18−21. DOI: 10.3787/j.issn.1000-0976.2011.11.005

    CUI Shuqing,WANG Fengrui,LIU Shunliang,et al. Multi−branch horizontal well drilling in the southern Qinshui Basin with high−rank coal beds[J]. Natural Gas Industry,2011,31(11):18−21. DOI: 10.3787/j.issn.1000-0976.2011.11.005
    [5]
    苏现波, 陈江峰, 孙俊民, 等. 煤层气地质学与勘探开发[M]. 北京: 科学出版社, 2001.
    [6]
    张振华. 辽河盆地小龙湾地区煤层气井钻井液技术探讨[J]. 特种油气藏,2005,12(5):68−71. DOI: 10.3969/j.issn.1006-6535.2005.05.019

    ZHANG Zhenhua. Discussion on drilling fluid for coalbed gas well of Xiaolongwan area in Liaohe Basin[J]. Special Oil and Gas Reservoirs,2005,12(5):68−71. DOI: 10.3969/j.issn.1006-6535.2005.05.019
    [7]
    欧阳云丽. 钻井过程中井筒压力及压力波动对煤储层的伤害[D]. 荆州: 长江大学, 2013.

    OUYANG Yunli. The damage of wellbore pressure and pressure fluctuations to coal formation during drilling process[D]. Jingzhou: Yangtze University, 2013.
    [8]
    孙晗森,王成文. 固井水泥浆对裂缝割理发育型煤层气储层的伤害机理[J]. 天然气工业,2018,38(9):82−87. DOI: 10.3787/j.issn.1000-0976.2018.09.011

    SUN Hansen,WANG Chengwen. Damage mechanism of cement slurry to CBM reservoirs with developed fractures and cleats:A case study from eastern Yunnan and western Guizhou in China[J]. Natural Gas Industry,2018,38(9):82−87. DOI: 10.3787/j.issn.1000-0976.2018.09.011
    [9]
    魏迎春,李超,曹代勇,等. 煤层气洗井中煤粉分散剂对煤岩的影响[J]. 煤炭学报,2018,43(7):1951−1958. DOI: 10.13225/j.cnki.jccs.2018.0364

    WEI Yingchun,LI Chao,CAO Daiyong,et al. Effect of pulverized coal dispersant on coal in the CBM well–washing technology[J]. Journal of China Coal Society,2018,43(7):1951−1958. DOI: 10.13225/j.cnki.jccs.2018.0364
    [10]
    王兴隆. 煤层气开发钻完井技术[C]//煤储层气学术研讨会论文集. 北京: 地质出版社, 2008.
    [11]
    秦建强,刘小康. 煤层气钻井中煤储层的保护措施[J]. 中国煤炭地质,2008,20(3):67−68. DOI: 10.3969/j.issn.1674-1803.2008.03.018

    QIN Jianqiang,LIU Xiaokang. Coal reservoir protective measures during CBM drilling[J]. Coal Geology of China,2008,20(3):67−68. DOI: 10.3969/j.issn.1674-1803.2008.03.018
    [12]
    许卫. 煤层甲烷气勘探开发工艺技术进展[M]. 北京: 石油工业出版社, 2001.
    [13]
    孙斌,赵庆波,李五忠. 中国煤层气资源及勘探策略[J]. 天然气地球科学,1998,9(6):1−10. DOI: 10.11764/j.issn.1672-1926.1998.06.1

    SUN Bin,ZHAO Qingbo,LI Wuzhong. China coal reservoir gas resources and exploration strategies[J]. Natural Gas Geoscience,1998,9(6):1−10. DOI: 10.11764/j.issn.1672-1926.1998.06.1
    [14]
    鲜保安,崔思华,蓝海峰,等. 中国煤层气开发关键技术及综合利用[J]. 天然气工业,2004,24(5):104−106. DOI: 10.3321/j.issn:1000-0976.2004.05.034

    XIAN Bao’an,CUI Sihua,LAN Haifeng,et al. Key techniques and integrative utilization of coalbed gas development in China[J]. Natural Gas Industry,2004,24(5):104−106. DOI: 10.3321/j.issn:1000-0976.2004.05.034
    [15]
    鲜保安,高德利,王一兵,等. 多分支水平井在煤层气开发中的应用机理分析[J]. 煤田地质与勘探,2005,33(6):34−37. DOI: 10.3969/j.issn.1001-1986.2005.06.010

    XIAN Bao’an,GAO Deli,WANG Yibing,et al. Analysis and applied mechanism of multiple laterals horizontal well in developing coalbed methane[J]. Coal Geology & Exploration,2005,33(6):34−37. DOI: 10.3969/j.issn.1001-1986.2005.06.010
    [16]
    鲜保安,高德利,李安启,等. 煤层气定向羽状水平井开采机理与应用分析[J]. 天然气工业,2005,25(1):114−116. DOI: 10.3321/j.issn:1000-0976.2005.01.033

    XIAN Bao’an,GAO Deli,LI Anqi,et al. Analysis on exploitation mechanism and application of coalbed gas with directional pinnate horizontal wells[J]. Natural Gas Industry,2005,25(1):114−116. DOI: 10.3321/j.issn:1000-0976.2005.01.033
    [17]
    吴国光,李建亮,孟献梁,等. 煤岩组成与水煤浆成浆性能的关系研究[J]. 中国矿业大学学报,2009,38(2):209−213. DOI: 10.3321/j.issn:1000-1964.2009.02.012

    WU Guoguang,LI Jianliang,MENG Xianliang,et al. Research on the relationship between slurry ability and petrological composition of coal[J]. Journal of China University of Mining & Technology,2009,38(2):209−213. DOI: 10.3321/j.issn:1000-1964.2009.02.012
    [18]
    刘飞. 山西沁水盆地煤岩储层特征及高产富集区评价[D]. 成都: 成都理工大学, 2007.

    LIU Fei. The characteristics of coal reservoirs and evaluation of coalbed methane enrichment and high–productivity in Qinshui Basin of Shanxi Province[D]. Chengdu: Chengdu University of Technology, 2007.
    [19]
    贾军,唐培琴. 钻井液对煤层气储层渗透性的损害[J]. 钻井液与完井液,1995,12(6):1−6.

    JIA Jun,TANG Peiqin. On the damage of coalbed methane reservoir by drilling fluid[J]. Drilling Fluid and Completion Fluid,1995,12(6):1−6.
    [20]
    陈振宏,王一兵,孙平. 煤粉产出对高煤阶煤层气井产能的影响及其控制[J]. 煤炭学报,2009,34(2):229−232. DOI: 10.3321/j.issn:0253-9993.2009.02.018

    CHEN Zhenhong,WANG Yibing,SUN Ping. Destructive influence and effectively treatments of coal powder to high–rank coalbed methane production[J]. Journal of China Coal Society,2009,34(2):229−232. DOI: 10.3321/j.issn:0253-9993.2009.02.018
    [21]
    刘升贵,贺小黑,李惠芳. 煤层气水平井煤粉产生机理及控制措施[J]. 辽宁工程技术大学学报(自然科学版),2011,30(4):508−512.

    LIU Shenggui,HE Xiaohei,LI Huifang. Production mechanism and control measures of coal powder in coalbed methane horizontal well[J]. Journal of Liaoning Technical University (Natural Science),2011,30(4):508−512.
    [22]
    毕延森,鲜保安,张晓斌. 煤层气水平井玻璃钢筛管完井工艺技术[J]. 煤炭科学技术,2016,44(5):106−111.

    BI Yansen,XIAN Bao’an,ZHANG Xiaobin. Fiber reinforced plastic screen pipe completion technology of coalbed methane horizontal well[J]. Coal Science and Technology,2016,44(5):106−111.
    [23]
    鲜保安,王力,张晓斌,等. 双管柱筛管完井技术在沁水煤层气区块水平井开发中的应用[J]. 油气藏评价与开发,2020,10(4):59−62.

    XIAN Bao’an,WANG Li,ZHANG Xiaobin,et al. Application of double string screen completion in horizontal wells of Qinshui CBM block[J]. Reservoir Evaluation and Development,2020,10(4):59−62.
    [24]
    蔡记华, 谷穗, 乌效鸣, 等. 松软煤层钻进用可降解钻井液的试验研究[C]//中国煤层气技术进展. 北京: 地质出版社, 2011.
    [25]
    蔡记华,刘浩,陈宇,等. 煤层气水平井可降解钻井液体系研究[J]. 煤炭学报,2011,36(10):1683−1688. DOI: 10.13225/j.cnki.jccs.2011.10.008

    CAI Jihua,LIU Hao,CHEN Yu,et al. Study on degradable drilling fluid system for coalbed methane horizontal drilling[J]. Journal of China Coal Society,2011,36(10):1683−1688. DOI: 10.13225/j.cnki.jccs.2011.10.008
    [26]
    熊涛,黄勇,朱宝存,等. 沁水盆地东缘洪水地区15号煤层储层特征研究[J]. 中国煤炭地质,2013,25(12):49−51.

    XIONG Tao,HUANG Yong,ZHU Baocun,et al. No.15 coal reservoir characteristic study in Hongshui area,eastern margin of Qinshui Basin[J]. Coal Geology of China,2013,25(12):49−51.
    [27]
    孟贵希,贺小黑,周国文,等. 沁水盆地和顺区块15号煤储层特征及试采效果分析[J]. 中国煤炭地质,2013,25(1):12−15. DOI: 10.3969/j.issn.1674-1803.2013.01.03

    MENG Guixi,HE Xiaohei,ZHOU Guowen,et al. No.15 coal reservoir characteristics and production testing result analysis in Heshun Block,Qinshui Basin[J]. Coal Geology of China,2013,25(1):12−15. DOI: 10.3969/j.issn.1674-1803.2013.01.03
    [28]
    许启鲁,黄文辉,刘贝,等. 沁水盆地南部15号煤储层物性特征分析[J]. 煤矿安全,2015,46(3):160−163.

    XU Qilu,HUANG Wenhui,LIU Bei,et al. Physical characteristics analysis of No.15 coal reservoir in southern Qinshui basin[J]. Safety in Coal Mines,2015,46(3):160−163.
    [29]
    陈燕萍. 沁水盆地南部15号煤储层物性特征及地质控制因素[D]. 北京: 中国地质大学(北京), 2014.

    CHEN Yanping. The reservoir physical property characteristics and geological controlling factors of No.15 seam in southern Qinshui Basin[D]. Beijing: China University of Geosciences(Beijing), 2014.
    [30]
    刘立军,陈必武,李宗源,等. 华北油田煤层气水平井钻完井方式优化与应用[J]. 煤炭工程,2019,51(10):77−81.

    LIU Lijun,CHEN Biwu,LI Zongyuan,et al. Optimization of drilling and completion methods for horizontal wells of coalbed methane in Huabei oilfield[J]. Coal Engineering,2019,51(10):77−81.
  • Related Articles

    [1]GAN Zhihui, SHANG Hui, DU Rongjun, ZHAN Huizhu. Mining subsidence analysis of gently inclined coal seams based on FLAC3D and DEM data[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(3): 158-166. DOI: 10.3969/j.issn.1001-1986.2021.03.020
    [2]WANG Yongguo, WANG Ming, XU Peng. Characteristics of collapsed fractured zone development of No.3-1 seam roof in Bayangaoler coal mine[J]. COAL GEOLOGY & EXPLORATION, 2019, 47(S1): 37-42. DOI: 10.3969/j.issn.1001-1986.2019.S1.007
    [3]SUN Siqing, ZHENG Kaige. Numerical simulation study on permeability enhancement effect of high pressure water cutting coal seam[J]. COAL GEOLOGY & EXPLORATION, 2017, 45(2): 45-49. DOI: 10.3969/j.issn.1001-1986.2017.02.008
    [4]JIA Xiaoliang, CUI Hongqing, ZHANG Zimin. Numerical simulation of geostatic stress influening factor at the end of fault[J]. COAL GEOLOGY & EXPLORATION, 2010, 38(4): 47-51. DOI: 10.3969/j.issn.1001-1986.2010.04.011
    [5]GAO Sheng-xiang, YE Rong-zhang, TANG Wei-li, XU Qing, HE Jin-qiang. Establishment of complex geological body FLAC3D model by using MATLAB interface program[J]. COAL GEOLOGY & EXPLORATION, 2009, 37(5): 51-53. DOI: 10.3969/j.issn.1001-1986.2009.05.012
    [6]LI Rong-wei, HOU En-ke, LIU Tian-lin. Stability analysis of combined slope in open-pit coal based on 3D numerical simulation[J]. COAL GEOLOGY & EXPLORATION, 2008, 36(2): 43-46,51.
    [7]LU Dun-hua, HE Zhong-ming, LIN Hang. Numerical analysis for grouting effect in jointed slope by FLAC3D[J]. COAL GEOLOGY & EXPLORATION, 2007, 35(2): 45-48.
    [8]YANG Chang-bin, ZHANG Sheng-yun, XU Jiang-bo, LIU Gui-ying, YANG Jian-cheng, LIU Zhao. FLAC3D program and its applications in couple problem between primary support design and rock wall condition in double-arch tunnel[J]. COAL GEOLOGY & EXPLORATION, 2004, 32(5): 49-52.
    [9]XU Pei-hua, CHEN Jian-ping, HUANG Run-qiu, YAN Ming. Analyses of 3D numerical simulation of toppling deformation mechanism of Jiefanggou left slope in Jingping Step 1 hydropower station[J]. COAL GEOLOGY & EXPLORATION, 2004, 32(4): 40-43.
    [10]ZHU Ji-yong, XU Guang-quan, GONG Gu-pei. Numerical simulation with effective reinforced area of dynamic consolidation[J]. COAL GEOLOGY & EXPLORATION, 2001, 29(2): 39-43.
  • Cited by

    Periodical cited type(19)

    1. 汪伟民,郝红俊,翟晓荣,程龙艺,汪蒙,庞瑶. 基于改进AHP-独立性权系数法的地质构造复杂程度定量评价. 煤炭技术. 2024(04): 119-124 .
    2. 高阳. 熵权耦合聚类法在奥灰岩溶水系统径流带划分中的应用. 华北自然资源. 2023(04): 61-63 .
    3. 李军,张波. 基于IFAHP-改进熵权法的煤矿综合防尘体系安全评价. 煤炭技术. 2023(09): 195-199 .
    4. 安律宁,陈继福,董广铭,李玉兵. 基于层次聚类模糊综合评判的矿井突水危险性评价. 煤炭与化工. 2023(10): 49-56 .
    5. 万松,范祝连,邓双,卞阿娜. 基于GIS的山地生态县域生态敏感性研究——以闽侯县为例. 南方林业科学. 2022(02): 58-63 .
    6. 姚辉,尹尚先,徐维,张润畦,蒋知廷. 基于组合赋权的加权秩和比法的底板突水危险性评价. 煤田地质与勘探. 2022(06): 132-137 . 本站查看
    7. 郑剑英. 基于综合赋权的煤层底板突水危险性评价. 工矿自动化. 2022(08): 140-146 .
    8. 黄家远. 基于IFAHP-熵权法的煤矿瓦斯防治系统安全评价. 中国矿山工程. 2022(04): 9-15 .
    9. 左林霄,高鹏,冯栋,王晓玮,侯恩科. 基于AHP-熵权法耦合方法的地质构造复杂程度定量评价. 煤炭科学技术. 2022(11): 140-149 .
    10. 尹会永,周鑫龙,郎宁,张历峰,王明丽,吴焘,李鑫. 基于SSA优化的GA-BP神经网络煤层底板突水预测模型与应用. 煤田地质与勘探. 2021(06): 175-185 . 本站查看
    11. 黄欢,朱宏军. 基于“富水性指数法”的煤层顶板含水层涌水危险性评价. 煤矿安全. 2020(02): 192-196 .
    12. 施龙青,张荣遨,韩进,丛培章,秦道霞,郭玉成. 基于熵权法-层次分析法耦合赋权的多源信息融合突水危险性评价. 河南理工大学学报(自然科学版). 2020(03): 17-25 .
    13. 韩承豪,魏久传,谢道雷,徐建国,张伟杰,赵智超. 基于集对分析-可变模糊集耦合法的砂岩含水层富水性评价——以宁东矿区金家渠井田侏罗系直罗组含水层为例. 煤炭学报. 2020(07): 2432-2443 .
    14. 刘伟韬,孙茜,徐百超. 基于GIS及主成分熵权法的底板突水危险性评价. 矿业研究与开发. 2020(11): 83-88 .
    15. 董丽丽,费城,张翔,曹超凡. 基于LSTM神经网络的煤矿突水预测. 煤田地质与勘探. 2019(02): 137-143 . 本站查看
    16. 王志刚,付小锦,梁杰,曹健,江胜国. 天津静海含煤区无井式煤炭地下气化选址地质评价模型. 煤田地质与勘探. 2019(03): 41-48 . 本站查看
    17. 刘德民,尹尚先,连会青. 煤矿工作面底板突水灾害预警重点监测区域评价技术. 煤田地质与勘探. 2019(05): 9-15 . 本站查看
    18. 霍丙杰,解振华,范张磊,荆雪冬. 陷落柱渗流突水机理及强度主控因素模拟. 煤田地质与勘探. 2019(06): 84-91 . 本站查看
    19. 胡今朝,林雨佳. 层次分析法在矿山地质环境检测中的应用. 世界有色金属. 2018(22): 276-277 .

    Other cited types(4)

Catalog

    Article Metrics

    Article views (350) PDF downloads (51) Cited by(23)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return