LIN Haifei,QIU Yue,HAN Shuangze,et al. Stimulation effect of pulsed ultrasonic excitation on coal pores with full-scale pore sizes[J]. Coal Geology & Exploration,2023,51(8):139−149. DOI: 10.12363/issn.1001-1986.23.01.0033
Citation: LIN Haifei,QIU Yue,HAN Shuangze,et al. Stimulation effect of pulsed ultrasonic excitation on coal pores with full-scale pore sizes[J]. Coal Geology & Exploration,2023,51(8):139−149. DOI: 10.12363/issn.1001-1986.23.01.0033

Stimulation effect of pulsed ultrasonic excitation on coal pores with full-scale pore sizes

More Information
  • Received Date: January 17, 2023
  • Revised Date: July 03, 2023
  • Accepted Date: August 24, 2023
  • Available Online: August 08, 2023
  • This study aims to further investigate the stimulation effect of pulsed ultrasonic excitation on coal pore structures. Using an ultrasonic excitation test system for gas-containing coals, this study conducted ultrasonic excitation tests on coals under continuous and interactive pulses with ultrasonic power of 800 W and 1000 W. Through low-pressure CO2 adsorption tests, low-temperature nitrogen adsorption tests, and the mercury injection capillary pressure (MICP) tests, this study explored the evolutionary patterns of parameters of various coal pores with full-scale pore sizes, including macropores (> 50 nm), mesopores (2‒50 nm), and micropores (< 2 nm). The test results are as follows: (1) Pulsed ultrasonic waves can expand coal pores. The pore volume of coals was primarily provided by micropores and macropores, with mesopores representing a small proportion. The specific surface area of various coal pores was in the order of micropores > mesopores > macropores. (2) Compared with those having undergone continuous or no ultrasonic excitation, coal samples that experienced pulsed ultrasonic excitation exhibited increased pore volumes and specific surface areas of various core pores. (3) With an increase in the number of pulsed ultrasonic excitation, the increased amplitude of the pore volume and specific surface area of coal pores increased linearly. Most especially, macropores presented significantly high increased amplitude. Pulsed ultrasonic excitation caused the continuous transformation between the water hammer pressure stage and the stagnation pressure stage, which increased the level of damage to coal pore structures. Developing pulsed ultrasonic emitters, combined with hydraulic technology, can improve the developmental degree of coal pores, coal permeability, and gas drainage efficiency.

  • [1]
    钱鸣高,许家林,王家臣. 再论煤炭的科学开采[J]. 煤炭学报,2018,43(1):1−13.

    QIAN Minggao,XU Jialin,WANG Jiachen. Further on the sustainable mining of coal[J]. Journal of China Coal Society,2018,43(1):1−13.
    [2]
    张超林,王恩元,王奕博,等. 近20年我国煤与瓦斯突出事故时空分布及防控建议[J]. 煤田地质与勘探,2021,49(4):134−141.

    ZHANG Chaolin,WANG Enyuan,WANG Yibo,et al. Spatial–temporal distribution of outburst accidents from 2001 to 2020 in China and suggestions for prevention and control[J]. Coal Geology & Exploration,2021,49(4):134−141.
    [3]
    王恩元,张国锐,张超林,等. 我国煤与瓦斯突出防治理论技术研究进展与展望[J]. 煤炭学报,2022,47(1):297−322.

    WANG Enyuan,ZHANG Guorui,ZHANG Chaolin,et al. Research progress and prospect on theory and technology for coal and gas outburst control and protection in China[J]. Journal of China Coal Society,2022,47(1):297−322.
    [4]
    田雨桐,张平松,吴荣新,等. 煤层采动条件下断层活化研究的现状分析及展望[J]. 煤田地质与勘探,2021,49(4):60−70.

    TIAN Yutong,ZHANG Pingsong,WU Rongxin,et al. Research status and prospect of fault activation under coal mining conditions[J]. Coal Geology & Exploration,2021,49(4):60−70.
    [5]
    聂百胜,何学秋,王恩元,等. 功率声波影响煤层甲烷储运的初步探讨[J]. 煤田地质与勘探,2004,32(6):23−26.

    NIE Baisheng,HE Xueqiu,WANG Enyuan,et al. The effect of power sound wave on storage and motion of coalbed methane[J]. Coal Geology & Exploration,2004,32(6):23−26.
    [6]
    肖晓春,潘一山,吕祥锋,等. 超声激励低渗煤层甲烷增透机理[J]. 地球物理学报,2013,56(5):1726−1733.

    XIAO Xiaochun,PAN Yishan,LYU Xiangfeng,et al. Mechanism of methane permeability enhance through ultrasonic irradiating on low permeable coal seam[J]. Chinese Journal of Geophysics,2013,56(5):1726−1733.
    [7]
    张春会,李其廉,于永江,等. 功率超声致煤层瓦斯升温机理[J]. 辽宁工程技术大学学报 (自然科学版),2009,28(4):525−528.

    ZHANG Chunhui,LI Qilian,YU Yongjiang,et al. Power ultrasound–induced heating mechanism of gas in coal seam[J]. Journal of Liaoning Technical University (Natural Science),2009,28(4):525−528.
    [8]
    于永江,张春会,王来贵. 超声波干扰提高煤层气抽放率的机理[J]. 辽宁工程技术大学学报 (自然科学版),2008,27(6):805−808.

    YU Yongjiang,ZHANG Chunhui,WANG Laigui. Mechanism of ultrasonic interference to increase the rate of CBM[J]. Journal of Liaoning Technical University (Natural Science),2008,27(6):805−808.
    [9]
    肖晓春,丁鑫,徐军,等. 超声作用下煤岩细观损伤演化模型及增渗机理研究[J]. 天然气地球科学,2016,27(1):166−172.

    XIAO Xiaochun,DING Xin,XU Jun,et al. Coal rock microscopic damage evolution model and permeability increase mechanism research under ultrasound[J]. Natural Gas Geoscience,2016,27(1):166−172.
    [10]
    李树刚,王瑞哲,林海飞,等. 超声波功率对煤体孔隙结构损伤及渗流特性影响实验研究[J]. 采矿与安全工程学报,2022,39(2):396−404.

    LI Shugang,WANG Ruizhe,LIN Haifei,et al. Experimental study on the influence of ultrasonic power on coal pore structure damage and seepage characteristics[J]. Journal of Mining & Safety Engineering,2022,39(2):396−404.
    [11]
    ZHANG Junwen,LI Yulin. Ultrasonic vibrations and coal permeability:Laboratory experimental investigations and numerical simulations[J]. International Journal of Mining Science and Technology,2017,27(2):221−228. DOI: 10.1016/j.ijmst.2017.01.001
    [12]
    任伟杰,袁旭东,潘一山. 功率超声对煤岩力学性质影响的实验研究[J]. 辽宁工程技术大学学报 (自然科学版),2001,20(6):773−776. DOI: 10.3969/j.issn.1008-0562.2001.06.012

    REN Weijie,YUAN Xudong,PAN Yishan. The experimental study of the action power ultrasound to the coal–mass[J]. Journal of Liaoning Technical University (Natural Science),2001,20(6):773−776. DOI: 10.3969/j.issn.1008-0562.2001.06.012
    [13]
    WANG Haijun,LI Hanzhang,TANG Lei,et al. Fracture of two three–dimensional parallel internal cracks in brittle solid under ultrasonic fracturing[J]. Journal of Rock Mechanics and Geotechnical Engineering,2022,14(3):757−769. DOI: 10.1016/j.jrmge.2021.11.002
    [14]
    SUN Yong,ZHAI Cheng,MA Huiteng,et al. Changes of coal molecular and pore structure under ultrasonic stimulation[J]. Energy & Fuels,2021,35(12):9847−9859.
    [15]
    TANG Zongqing,ZHAI Cheng,ZOU Quanle,et al. Changes to coal pores and fracture development by ultrasonic wave excitation using nuclear magnetic resonance[J]. Fuel,2016,186:571−578. DOI: 10.1016/j.fuel.2016.08.103
    [16]
    宋超,姜永东,王苏健,等. 超声波作用下煤体微观结构的实验研究[J]. 煤炭科学技术,2019,47(5):139−144.

    SONG Chao,JIANG Yongdong,WANG Sujian,et al. Experimental study on micro−structure of coal by ultrasonic treatment[J]. Coal Science and Technology,2019,47(5):139−144.
    [17]
    马会腾,翟成,徐吉钊,等. 基于NMR技术的超声波频率对煤体激励致裂效果的影响[J]. 煤田地质与勘探,2019,47(4):38−44.

    MA Huiteng,ZHAI Cheng,XU Jizhao,et al. Effect of NMR technology–based ultrasonic frequency on stimulated cracking of coal[J]. Coal Geology & Exploration,2019,47(4):38−44.
    [18]
    THOMMES M, KANEKO K, NEIMARK A V, et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report)[J]. Pure and Applied Chemistry, 2015, 87(9/10): 1051–1069.
    [19]
    林海飞,韩双泽,杨二豪,等. 脉冲超声对煤的孔隙结构及瓦斯解吸特性影响的实验研究[J]. 采矿与安全工程学报,2022,39(6):1235−1245.

    LIN Haifei,HAN Shuangze,YANG Erhao,et al. Experimental study on the influence of pulsed ultrasound on coal pore structure and gas desorption characteristics[J]. Journal of Mining & Safety Engineering,2022,39(6):1235−1245.
    [20]
    卢杰林,傅雪海,康俊强. 准南中低阶煤孔径结构全孔径定量综合表征[J]. 中国科技论文,2022,17(1):62−71.

    LU Jielin,FU Xuehai,KANG Junqiang. Quantitative and comprehensive characterization of full pore size in medium and low rank coal in southern margin of Junggar Basin[J]. China Sciencepaper,2022,17(1):62−71.
    [21]
    刘彦伟,张帅,左伟芹,等. 典型软硬煤全孔径孔隙结构差异性研究[J]. 煤炭科学技术,2021,49(10):98−106.

    LIU Yanwei,ZHANG Shuai,ZUO Weiqin,et al. Study on differences of pore structure of typical soft and hard coal[J]. Coal Science and Technology,2021,49(10):98−106.
    [22]
    刘怀谦,王磊,谢广祥,等. 煤体孔隙结构综合表征及全孔径分形特征[J]. 采矿与安全工程学报,2022,39(3):458−469.

    LIU Huaiqian,WANG Lei,XIE Guangxiang,et al. Comprehensive characterization and full pore size fractal characteristics of coal pore structure[J]. Journal of Mining & Safety Engineering,2022,39(3):458−469.
    [23]
    LI Yonghua,LU Gaoqing,RUDOLPH V. Compressibility and fractal dimension of fine coal particles in relation to pore structure characterisation using mercury porosimetry[J]. Particle & Particle Systems Characterization,1999,16(1):25−31.
    [24]
    CROSDALE P J, BEAMISH B B, VALIX M. Coalbed methane sorption related to coal composition[J]. International Journal of Coal Geology, 1998, 35(1/2/3/4): 147–158.
    [25]
    LU Guanwen,WANG Jilin,WEI Chongtao,et al. Pore fractal model applicability and fractal characteristics of seepage and adsorption pores in middle rank tectonic deformed coals from the Huaibei coal field[J]. Journal of Petroleum Science and Engineering,2018,171:808−817. DOI: 10.1016/j.petrol.2018.07.074
  • Related Articles

    [1]ZHANG Haitao, JIANG Binbin, ZHANG Haiqin, LI Peng, WU Min, HAO Jingwei, HU Yutian. Hydrochemical characteristics and component sources of water in underground reservoirs in the Daliuta Coal Mine[J]. COAL GEOLOGY & EXPLORATION, 2024, 52(12): 118-130. DOI: 10.12363/issn.1001-1986.24.08.0536
    [2]WANG Yutong, WANG Hao, WANG Tiantian, XUE Jiankun, SHANG Hongbo, ZHOU Zhenfang. Hydrochemical characteristics and source analysis of mine water in shallow coal seams in Shaanxi and Inner Mongolia contiguous area[J]. COAL GEOLOGY & EXPLORATION, 2023, 51(4): 85-94. DOI: 10.12363/issn.1001-1986.22.07.0553
    [3]CHEN Kai, LIU Qimeng, LIU Yu, PENG Weihua, WANG Zitao, ZHAO Xiang. Hydrochemical characteristics and source analysis of deep groundwater in Qianyingzi Coal Mine[J]. COAL GEOLOGY & EXPLORATION, 2022, 50(8): 99-106. DOI: 10.12363/issn.1001-1986.21.11.0631
    [4]JIN Dewu, WANG Tiantian, ZHAO Baofeng, LI Debin, ZHOU Zhenfang, SHANG Hongbo. Distribution characteristics and formation mechanism of high salinity groundwater in northeast Ningdong Coalfield[J]. COAL GEOLOGY & EXPLORATION, 2022, 50(7): 118-127. DOI: 10.12363/issn.1001-1986.21.10.0593
    [5]ZHANG Yuzhuo, XU Zhimin, ZHANG Li, LYU Weikui, YUAN Huiqing, ZHOU Lijie, GAO Yating, ZHU Lulu. Hydrochemical characteristics and genetic mechanism of high TDS groundwater in Xinjulong Coal Mine[J]. COAL GEOLOGY & EXPLORATION, 2021, 49(5): 52-62. DOI: 10.3969/j.issn.1001-1986.2021.05.006
    [6]ZHENG Zhuyan, XU Guangquan, YANG Tingting, YU Shitao, ZHANG Haitao. Hydrochemical formation mechanism and transmissivity-impermeability analysis of karst groundwater on both sides of fault F104 in Gubei coal mine in Huainan[J]. COAL GEOLOGY & EXPLORATION, 2020, 48(1): 129-137. DOI: 10.3969/j.issn.1001-1986.2020.01.017
    [7]REN Dengjun, SUN Yayue, LI Jianyang. Hydrochemical characteristics and control of water hazard from coal seam roof in Gaojiabao coal mine[J]. COAL GEOLOGY & EXPLORATION, 2019, 47(S1): 26-31. DOI: 10.3969/j.issn.1001-1986.2019.S1.005
    [8]CHEN Luwang, YIN Xiaoxi, LIU Xin, GUI Herong. Multivariate statistical analysis on hydrochemical evolution of groundwater in the concealed coal mines in North China[J]. COAL GEOLOGY & EXPLORATION, 2013, 41(6): 43-48,52. DOI: 10.3969/j.issn.1001-1986.2013.06.011
    [9]ZHANG Lezhong, CAO Haidong. Distinguishing the sources of water inrush in Sangshuping coal mine by hydrochemical characteristics[J]. COAL GEOLOGY & EXPLORATION, 2013, 41(4): 42-45. DOI: 10.3969/j.issn.1001-1986.2013.04.011
    [10]LI Ding-long, ZHOU Zhi-an. HYDROCHEMICAL CHARACTERISTICS OF THE FLOOR AQUIFER IN LINHUAN MINING AREA AND THEIR ORIGIN[J]. COAL GEOLOGY & EXPLORATION, 1994, 22(4): 37-41.
  • Cited by

    Periodical cited type(17)

    1. 孙魁,范立民,马万超,陈建平,彭捷,张鹏华,高帅,李成,苗彦平,王宏科. 鄂尔多斯盆地北部直罗组地下水地球化学特征及其指示意义. 煤炭学报. 2024(04): 2004-2020 .
    2. 范立民,马万超,常波峰,孙魁,苗彦平,路波,田水豹,杨磊. 榆神府矿区地下水水化学特征及形成机理. 煤炭科学技术. 2023(01): 383-394 .
    3. 杨秋,曹英杰,张宇,陈建耀,王诗忠,田帝. 闭坑铅锌矿区地下水—矿坑水水化学特征及成因分析. 生态环境学报. 2023(02): 361-371 .
    4. 许开卿,乔伟,李文平,冯鲁顺,刘梦楠,程香港. 深部岩溶矿井水化学特征及含水层水力联系研究. 煤矿安全. 2023(08): 150-160 .
    5. 宗伟琴,赵宝峰. 鸳鸯湖矿区地下水化学特征与成因分析. 煤矿安全. 2023(08): 161-167 .
    6. 刘海,康博,管政亭,宋阳,柴义伦. 淮南煤矿区地表水和地下水水化学特征及控制因素. 环境科学. 2023(11): 6038-6049 .
    7. 姜春露,黄文迪,傅先杰,郑刘根,程世贵,单崇磊. 淮南阜东矿区二叠系砂岩高盐地下水低硫酸盐特征及成因机制. 煤田地质与勘探. 2023(11): 74-82 . 本站查看
    8. 胡广冲,赵军海,张继,袁野. 基于水文地球化学信息的东庄坝址渗漏分析. 成都大学学报(自然科学版). 2022(02): 195-201 .
    9. 陈凯,刘启蒙,刘瑜,彭位华,汪子涛,赵祥. 钱营孜煤矿深部地下水水化学特征及来源解析. 煤田地质与勘探. 2022(08): 99-106 . 本站查看
    10. 王世东. 桌子山煤田奥灰水水化学特征及成因分析. 煤炭科学技术. 2022(08): 180-188 .
    11. 吴晓丽,张杨,孙媛媛,吴吉春. 平朔矿区地下水水化学特征及成因. 南京大学学报(自然科学). 2021(03): 417-425 .
    12. 许继影,桂和荣,葛春贵,倪建明,郭艳,庞迎春,胡杰,聂锋. 淮北青东煤矿深层地热水的水文地球化学特征与水源识别. 工程地质学报. 2021(04): 1037-1047 .
    13. 谢华东,侯俊华,李萍,朱术云. 基于水化学场的63_上06工作面突水水源判别研究. 煤矿现代化. 2021(06): 135-138 .
    14. 包婷婷. 新集二矿地下水稀土元素地球化学特征. 安徽理工大学学报(自然科学版). 2021(03): 41-48 .
    15. 李凌,胡友彪,刘瑜,琚棋定. 基于多元统计与Bayes判别模型的水源判别. 安徽理工大学学报(自然科学版). 2021(06): 25-31 .
    16. 田树坤. 水压-应力耦合作用下灰岩力学特性试验. 煤田地质与勘探. 2020(03): 137-144 . 本站查看
    17. 汪佩,赵剑儒. 主要充水含水层水化学常规离子成分来源分析. 能源技术与管理. 2020(05): 18-21 .

    Other cited types(7)

Catalog

    Article Metrics

    Article views (258) PDF downloads (56) Cited by(24)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return